Click here to see the Celignis Analysis Packages that determine Cellulose Content
Request a QuoteCellulose Content
Click here to see the Celignis Analysis Packages that determine Hemicellulose Content
Request a QuoteHemicellulose Content
Click here to see the Celignis Analysis Packages that determine Lignin Content
Request a QuoteLignin Content
Click here to see the Celignis Analysis Packages that determine Starch Content
Request a QuoteStarch Content
Click here to see the Celignis Analysis Packages that determine Uronic Acid Content
Request a QuoteUronic Acid Content
Click here to see the Celignis Analysis Packages that determine Enzymatic Hydrolysis
Request a QuoteEnzymatic Hydrolysis
Click here to see the Celignis Analysis Packages that determine Ash Content
Request a QuoteAsh Content
Click here to see the Celignis Analysis Packages that determine Heating (Calorific) Value
Request a QuoteHeating (Calorific) Value
Ash Shrinkage Starting Temperature (SST) - This occurs when the area of the test piece of Bark ash falls below 95% of the original test piece area.
Ash Deformation Temperature (DT) - The temperature at which the first signs of rounding of the edges of the test piece occurs due to melting.
Ash Hemisphere Temperature (HT) - When the test piece of Bark ash forms a hemisphere (i.e. the height becomes equal to half the base diameter).
Ash Flow Temperature (FT) - The temperature at which the Bark ash is spread out over the supporting tile in a layer, the height of which is half of the test piece at the hemisphere temperature.
Click here to see the Celignis Analysis Packages that determine Ash Melting Behaviour
Request a QuoteAsh Melting Behaviour
Click here to see the Celignis Analysis Packages that determine Major and Minor Elements
Request a QuoteMajor and Minor Elements
At Celignis we can provide you with crucial data on feedstock suitability for AD as well as on the composition of process residues. For example, we can determine the biomethane potential (BMP) of Bark. The BMP can be considered to be the experimental theoretical maximum amount of methane produced from a feedstock. We moniotor the volume of biogas produced allowing for a cumulative plot over time, accessed via the Celignis Database. Our BMP packages also involve routine analysis of biogas composition (biomethane, carbon dioxide, hydrogen sulphide, ammonia, oxygen). We also provide detailed analysis of the digestate, the residue that remains after a sample has been digested. Our expertise in lignocellulosic analysis can allow for detailed insight regarding the fate of the different biogenic polymers during digestion.
Click here to see the Celignis Analysis Packages that determine BMP
Request a QuoteBMP
At Celignis we can determine the bulk density of biomass samples, including Bark, according to ISO standard 17828 (2015). This method requires the biomass to be in an appropriate form (chips or powder) for density determination.
Click here to see the Celignis Analysis Packages that determine Bulk Density
Request a QuoteBulk Density
Our lab is equipped with a Retsch AS 400 sieve shaker. It can accommodate sieves of up to 40 cm diameter, corresponding to a surface area of 1256 square centimetres. This allows us to determine the particle size distribution of a range of samples, including Bark, by following European Standard methods EN 15149- 1:2010 and EN 15149-2:2010.
Click here to see the Celignis Analysis Packages that determine Particle Size
Request a QuoteParticle Size
Biobutanol from lignocellulosic biomass has gained much attention due to several advantages over bioethanol. Though microbial production of butanol through ABE fermentation is an established technology, the use of lignocellulosic biomass as feedstock presents several challenges. In the present study, biobutanol production from enzymatic hydrolysate of acid pretreated rice straw was evaluated using Clostridium sporogenes BE01. This strain gave a butanol yield of 3.43 g/l and a total solvent yield of 5.32 g/l in rice straw hydrolysate supplemented with calcium carbonate and yeast extract. Hydrolysate was analyzed for the level of inhibitors such as acetic acid, formic acid and furfurals which affect the growth of the organism and in turn ABE fermentation. Methods for preconditioning the hydrolysate to remove toxic end products were done so as to improve the fermentation efficiency. Conditions of ABE fermentation were fine tuned resulting in an enhanced biobutanol reaching 5.52 g/l. |
Context: Lichens are composite organisms consisting of a symbiotic association of a fungus (the mycobiont) with a photosynthetic partner (the phytobiont), usually either a green alga or cyanobacterium. The morphology, physiology and biochemistry of lichens are very different from those of the isolated fungus and alga in culture. Lichens occur in some of the most extreme environments on the Earth and may be useful to scientists in many commercial applications. Objective: Over the past 2 decades, there has been a renewed and growing interest in lichens as a source of novel, pharmacologically active biomolecules. This review summarizes the past and current research and development trends in the characterization and use of lichens and their bioactive compounds in traditional medicine and other biopharmaceutical applications of commercial interest. Methods: The present review contains 10 illustrations and 188 references compiled from major databases including Science Direct, Chemical Abstracts, PubMed and Directory of Open Access Journals. Results: Lichen morphology, symbiosis, diversity and bioactivities including enzyme inhibitory, antimicrobial, antifungal, antiviral, anticancer, anti-insecticidal and antioxidant actions were reviewed and summarized. Recent progress in lichens and lichen-forming fungi was discussed with emphasis on their potential to accelerate commercialization of lichen-based products. Conclusions: Lichens are an untapped source of biological activities of industrial importance and their potential is yet to be fully explored and utilized. Lichen-derived bioactive compounds hold great promise for biopharmaceutical applications as antimicrobial, antioxidant and cytotoxic agents and in the development of new formulations or technologies for the benefit of human life. |