• Feedstocks Analysed at Celignis
    Compost

Background on Compost

Compost can be defined as decomposed organic matter. It can be produced from a wide variety of organic feedstocks. Many composts are produced from municipal green (garden) wastes. The composting process can involve reducing the particle size of the biomass and then placing it in mounds where the composting is allowed to take place over an extended period of time. Fully composted material can, in some cases, be suitable for addition to soil.

As part of a research project funded by the Irish Environmental Protection Agency, Celignis founder Daniel Hayes has collected, processed, and analysed (using both chemical and near-infrared techniques) a number of different compost samples.

Analysis of Compost at Celignis



Celignis Analytical can determine the following properties of Compost samples:



Lignocellulosic Properties of Compost

Cellulose Content of Compost

The composition of compost will depend on the organic material that has been used to produce it and the time and extent of the composting process. Taking the example of compost produced from horticultural waste, there will be a significant variation in composition according to the time of year. For example, in the summer the majority of garden wastes are likely to be of grasses (lawn cuttings) or the cuttings of bushes (small twigs and leaves) rather than bulky woody materials. In contrast, in the winter months the relative proportion of woody materials might be expected to increase.

In his EPA-funded research project, Celignis founder Daniel Hayes found that an increased period of comosting was associated with a lower cellulose content.

Click here to see the Celignis Analysis Packages that determine Cellulose Content

Request a QuoteCellulose Content



Hemicellulose Content of Compost

The hemicellulose content of compost will depend on the organic material that has been used to produce it and the time and extent of the composting process.

Click here to see the Celignis Analysis Packages that determine Hemicellulose Content

Request a QuoteHemicellulose Content



Lignin Content of Compost

In his EPA-funded research project, Celignis founder Daniel Hayes found that an increased period of composting was associated with an increased lignin content.

Click here to see the Celignis Analysis Packages that determine Lignin Content

Request a QuoteLignin Content



Starch Content of Compost

The starch content of compost will depend on the composting time, with the value decreasing as the composting time increases.

Click here to see the Celignis Analysis Packages that determine Starch Content

Request a QuoteStarch Content



Uronic Acid Content of Compost

Uronic acids are present in many of the feedstocks that are used to generate compost, however we are not aware of any studies to date on the fate of these uronic acids during the composting process.

Click here to see the Celignis Analysis Packages that determine Uronic Acid Content

Request a QuoteUronic Acid Content



Enzymatic Hydrolysis of Compost

We can undertake tests involving the enzymatic hydrolysis of Compost. In these experiments we can either use a commercial enzyme mix or you can supply your own enzymes. We also offer analysis packages that compare the enzymatic hydrolysis of a pre-treated sample with that of the native original material.

Click here to see the Celignis Analysis Packages that determine Enzymatic Hydrolysis

Request a QuoteEnzymatic Hydrolysis



Bioenergy Properties of Compost

Ash Content of Compost

The ash content of compost is likely to increase with increased degradation of the organic matter.

Click here to see the Celignis Analysis Packages that determine Ash Content

Request a QuoteAsh Content



Heating (Calorific) Value of Compost

The heating value of compost will depend on the organic material that has been used to produce it and the time and extent of the composting process. Composts can have lesser heating values due to their high ash and moisture contents.

Click here to see the Celignis Analysis Packages that determine Heating (Calorific) Value

Request a QuoteHeating (Calorific) Value



Ash Melting Behaviour of Compost

Ash melting, also known as ash fusion and ash softening, can lead to slagging, fouling and corrosion in boilers which may reduce conversion efficiency. We can determine the ash melting behaviour of Compost using our Carbolite CAF G5 BIO ash melting furnace. It can record the following temperatures:

Ash Shrinkage Starting Temperature (SST) - This occurs when the area of the test piece of Compost ash falls below 95% of the original test piece area.

Ash Deformation Temperature (DT) - The temperature at which the first signs of rounding of the edges of the test piece occurs due to melting.

Ash Hemisphere Temperature (HT) - When the test piece of Compost ash forms a hemisphere (i.e. the height becomes equal to half the base diameter).

Ash Flow Temperature (FT) - The temperature at which the Compost ash is spread out over the supporting tile in a layer, the height of which is half of the test piece at the hemisphere temperature.



Click here to see the Celignis Analysis Packages that determine Ash Melting Behaviour

Request a QuoteAsh Melting Behaviour



Major and Minor Elements in Compost

Examples of major elements that may be present in Compost include potassium and sodium which are present in biomass ash in the forms of oxides. These can lead to fouling, ash deposition in the convective section of the boiler. Alkali chlorides can also lead to slagging, the fusion and sintering of ash particles which can lead to deposits on boiler tubes and walls.

We can also determine the levels of 13 different minor elements (such as arsenic, copper, and zinc) that may be present in Compost.

Click here to see the Celignis Analysis Packages that determine Major and Minor Elements

Request a QuoteMajor and Minor Elements



Analysis of Compost for Anaerobic Digestion



Biomethane potential (BMP) of Compost

At Celignis we can provide you with crucial data on feedstock suitability for AD as well as on the composition of process residues. For example, we can determine the biomethane potential (BMP) of Compost. The BMP can be considered to be the experimental theoretical maximum amount of methane produced from a feedstock. We moniotor the volume of biogas produced allowing for a cumulative plot over time, accessed via the Celignis Database. Our BMP packages also involve routine analysis of biogas composition (biomethane, carbon dioxide, hydrogen sulphide, ammonia, oxygen). We also provide detailed analysis of the digestate, the residue that remains after a sample has been digested. Our expertise in lignocellulosic analysis can allow for detailed insight regarding the fate of the different biogenic polymers during digestion.



Click here to see the Celignis Analysis Packages that determine BMP

Request a QuoteBMP



Physical Properties of Compost



Bulk Density of Compost

At Celignis we can determine the bulk density of biomass samples, including Compost, according to ISO standard 17828 (2015). This method requires the biomass to be in an appropriate form (chips or powder) for density determination.



Click here to see the Celignis Analysis Packages that determine Bulk Density

Request a QuoteBulk Density



Particle Size of Compost

Our lab is equipped with a Retsch AS 400 sieve shaker. It can accommodate sieves of up to 40 cm diameter, corresponding to a surface area of 1256 square centimetres. This allows us to determine the particle size distribution of a range of samples, including Compost, by following European Standard methods EN 15149- 1:2010 and EN 15149-2:2010.



Click here to see the Celignis Analysis Packages that determine Particle Size

Request a QuoteParticle Size

Publications on Compost By The Celignis Team

V. P. Zambare, S. S. Nilegaonkar and P. P. Kanekar (2014) Scale up production of protease using Pseudomonas aeruginosa MCM B-327 and its detergent compatibility, Journal of Biochemical Technology 5(2): 698-707

Link

The Maximum Protease Activity Was Obtained From P. Aeruginosa MCM B-327 With Soybean Meal 1%, Tryptone 1%, Initial Medium PH 7, Agitation Rate 250 Rpm, Aeration Rate 0.75 Vvm And Fermentation Temperature 30 °C, Under Submerged Fermentation Conditions (SmF). The Protease Productivity At 10 And 120L Fermenters Was Found To Be 16,021 And 9,975 UL-1h-1 Respectively. Kinetics Of Cell Growth Revealed That Specific Cell Growth Rate Was 0.025 H-1. Protease Was Active And Stable At Different PH, Temperatures, In Anionic, Cationic And Non-Ionic Detergent Additives, As Well As In Commercial Detergents. The Protease Exhibited Blood Stains Removing Performance Indicating Its Potential In Detergent Industry. The Dried Ammonium Sulphate Precipitated Protease Was Stable At Room Temperature For A Period Of One Year. The Protease Has Shown Properties Suitable For Its Application In Detergents. The Results Contribute To Basic Knowledge And Application Of Protease From P.Aeruginosa To Detergent Industry. The Studies Will Help To Optimize The Production Of This Protease For Biotechnological Applications.

V. P. Zambare, S. S. Nilegaonkar and P. P. Kanekar (2013) Protease production and enzymatic soaking of salt-preserved buffalo hides for leather processing, IIAOB Letters 3(1): 1-4

Link

Response surface methodological (RSM) optimization of protease by Pseudomonas aeruginosa MCM B327, increased 1.3-fold activity with 1% inoculum having cell density of 27.57 x 109 cells mL-1 at pH 7, 300C and 72 h of incubation. Protease enzyme recovered from P. aeruginosa showed characteristic activities against diverse proteins of hide. Enzyme was found to be active with substrates e.g. casein, Bovine serum albumin, gelatin, elastin, haemoglobin but inactive against keratin and collagen. During leather manufacturing, non-collagenase and non-keratinase activities have advantageous in a quality leather and hair saving process, respectively. Increased proteolytic enzyme concentration (0.1-0.5%) in soaking process showed increased water penetration because of hydrolysis of albumin and elastin proteins as indicated by opened fibers in histopathological sections. These findings suggest, protease secreted by P. aeruginosa may have application in soaking operation of leather processing for minimizing harmful deharing chemicals and processing time.

Hayes, D. J. M. (2011) Analysis of Lignocellulosic Feedstocks for Biorefineries with a Focus on The Development of Near Infrared Spectroscopy as a Primary Analytical Tool, PhD Thesis832 pages (over 2 volumes)

Download

The processing of lignocellulosic materials in modern biorefineries will allow for the production of transport fuels and platform chemicals that could replace petroleum-derived products. However, there is a critical lack of relevant detailed compositional information regarding feedstocks relevant to Ireland and Irish conditions. This research has involved the collection, preparation, and the analysis, with a high level of precision and accuracy, of a large number of biomass samples from the waste and agricultural sectors. Not all of the waste materials analysed are considered suitable for biorefining; for example the total sugar contents of spent mushroom composts are too low. However, the waste paper/cardboard that is currently exported from Ireland has a chemical composition that could result in high biorefinery yields and so could make a significant contribution to Ireland’s biofuel demands.

Miscanthus was focussed on as a major agricultural feedstock. A large number of plants have been sampled over the course of the harvest window (October to April) from several sites. These have been separated into their anatomical fractions and analysed. This has allowed observations to be made regarding the compositional trends observed within plants, between plants, and between harvest dates. Projections are made regarding the extents to which potential chemical yields may vary. For the DIBANET hydrolysis process that is being developed at the University of Limerick, per hectare yields of levulinic acid from Miscanthus could be 20% greater when harvested early compared with a late harvest.

The wet-chemical analysis of biomass is time-consuming. Near infrared spectroscopy (NIRS) has been developed as a rapid primary analytical tool with separate quantitative models developed for the important constituents of Miscanthus, peat, and (Australian) sugarcane bagasse. The work has demonstrated that accurate models are possible, not only for dry homogenous samples, but also for wet heterogeneous samples. For glucose (cellulose) the root mean square error of prediction (RMSEP) for wet samples is 1.24% and the R2 for the validation set ( ) is 0.931. High accuracies are even possible for minor analytes; e.g. for the rhamnose content of wet Miscanthus samples the RMSEP is 0.03% and the is 0.845. Accurate models have also been developed for pre-treated Miscanthus samples and are discussed. In addition, qualitative models have been developed. These allow for samples to be discriminated for on the basis of plant fraction, plant variety (giganteus/non-giganteus), harvest-period (early/late), and stand-age (one-year/older).

Quantitative NIRS models have also been developed for peat, although the heterogeneity of this feedstock means that the accuracies tend to be lower than for Miscanthus. The development of models for sugarcane bagasse has been hindered, in some cases, by the limited chemical variability between the samples in the calibration set. Good models are possible for the glucose and total sugars content, but the accuracy of other models is poorer. NIRS spectra of Brazilian bagasse samples have been projected onto these models, and onto those developed for Miscanthus, and the Miscanthus models appear to provide a better fit than the Australian bagasse models.

V. P. Zambare, S. S. Nilegaonkar, P. P. Kanekar (2011) Production optimization and purification of a novel extracellular protease from Pseudomonas aeruginosa MCM B-327, New Biotechnology 28(2): 173-181

Link

The focus of this study was on production, purification and characterization of dehairing protease from Pseudomonas aeruginosa MCM B-327, isolated from vermicompost pit soil. Optimum protease activity, 395 U mL?1, was observed in the medium containing soybean meal and tryptone, at pH 7 and 30°C. The crude enzyme exhibited dehairing activity. As compared to chemical method, enzymatic method of dehairing showed reduction in COD, TDS and TSS by 34.28%, 37.32% and 51.58%, respectively. Zymogram of crude enzyme on native-PAGE presented two bands with protease activity of molecular weights of 56 and 67 kDa. Both proteases showed dehairing activity. Out of these, 56 kDa protease (PA02) was purified 3.05-folds with 2.71% recovery. The enzyme was active in pH range 7–9 and temperature 20–50°C with optimum pH of 8 and temperature 35°C. Moreover, the enzyme activity of PA02 protease was not strongly inhibited by specific inhibitor showing the novel nature of enzyme compared to serine, cysteine, aspartyl and metalloproteases. Kinetic studies indicated that substrate specificity of PA02 protease was towards various natural and synthetic proteolytic substrates but inactive against collagen and keratin. These findings suggest protease secreted by P. aeruginosa MCM B-327 may have application in dehairing for environment-friendly leather processing.

S. S. Nilegaonkar, V. P. Zambare, P. P. Kanekar, P. K. Dhakephalkar, S. S. Sarnaik, N. K. Chandrababu, Rama Rajaram, B. Ramanaiah, T. Ramasami, Y. K. Saikumari and P. Balaram (2007) A novel protease for industrial application, German Patent Patent NO. 102007013950.2

The present invention relates to an extracellular enzyme protease obtained by growing the culture of Pseudomonas aeruginosa MCM B-327 isolated from vermiculture pit soil and deposited in MTCC, IMTECH, Chandigarh with designation MTCC 5270, in production medium of pH 7.0; containing soybean meal and tryptone as raw materials, at 30° C. for 72 h. The organism was also able to produce protease using different agricultural products/byproducts as protein sources. The partially purified non-collagenolytic, calcium independent protease with molecular weight 60 kDa has activity in pH range of 6.0-11.0 and temperature range of 25-65° C.; stability in pH range of 6.0-10.0 and temperature 25-45° C. The protease activity was retained for 8 months when stored at ambient temperature. Ammonium sulphate precipitated enzyme was able to completely dehair animal skins and hides without chemicals like lime, sodium sulphide and calcium.

S. S. Nilegaonkar, V. P. Zambare, P. P. Kanekar, P. K. Dhakephalkar, S. S. Sarnaik, N. K. Chandrababu, Rama Rajaram, B. Ramanaiah, T. Ramasami, Y. K. Saikumari and P. Balaram (2007) A novel protease for industrial application, US Patent Patent No US20080220499A1

Link

The present invention relates to an extracellular enzyme protease obtained by growing the culture of Pseudomonas aeruginosa MCM B-327 isolated from vermiculture pit soil and deposited in MTCC, IMTECH, Chandigarh with designation MTCC 5270, in production medium of pH 7.0; containing soybean meal and tryptone as raw materials, at 30° C. for 72 h. The organism was also able to produce protease using different agricultural products/byproducts as protein sources. The partially purified non-collagenolytic, calcium independent protease with molecular weight 60 kDa has activity in pH range of 6.0-11.0 and temperature range of 25-65° C.; stability in pH range of 6.0-10.0 and temperature 25-45° C. The protease activity was retained for 8 months when stored at ambient temperature. Ammonium sulphate precipitated enzyme was able to completely dehair animal skins and hides without chemicals like lime, sodium sulphide and calcium.

S. S. Nilegaonkar, V. P. Zambare, P. P. Kanekar, P. K. Dhakephalkar, S. S. Sarnaik, N. K. Chandrababu, Rama Rajaram, B. Ramanaiah, T. Ramasami, Y. K. Saikumari and P. Balaram (2006) A novel protease for industrial application, Indian Patent Patent NO. 2471DEL2006

The present invention relates to an extracellular enzyme protease obtained by growing the culture of Pseudomonas aeruginosa MCM B-327 isolated from vermiculture pit soil and deposited in MTCC, IMTECH, Chandigarh with designation MTCC 5270, in production medium of pH 7.0; containing soybean meal and tryptone as raw materials, at 30° C. for 72 h. The organism was also able to produce protease using different agricultural products/byproducts as protein sources. The partially purified non-collagenolytic, calcium independent protease with molecular weight 60 kDa has activity in pH range of 6.0-11.0 and temperature range of 25-65° C.; stability in pH range of 6.0-10.0 and temperature 25-45° C. The protease activity was retained for 8 months when stored at ambient temperature. Ammonium sulphate precipitated enzyme was able to completely dehair animal skins and hides without chemicals like lime, sodium sulphide and calcium.





Examples of Other Feedstocks Analysed at Celignis



...