Natural microbes that produce 1,3-Propanediol are Klebsiella, Clostridia, Citrobacter, Enterobacter and Lactobacilli. They all use glycerol as a carbon source and produce 1,3 PDO through 3-hydroxypropionaldehyde route
using glycerol dehydratase enzymes and 1,3-propanediol oxidoreductase enzymes. The biggest constraint for microbial production of 1,3 PDO is low yield and productivity which is due to multiple reasons including:
as low cell density, irreversible inhibition of glycerol dehydratase enzyme with glycerol, and requirement of speciality ingredients such as vitamins.
Though the use of waste glycerol from biofuel industry is highly advocated, its usage will cause more complications due to microbial inhibition with the presence of methanol, surfactants, and free fatty acids.
Hence, raw glycerol from industrial streams should be pretreated to remove inhibitors before using it for 1,3-Propanediol or should adapt or isolate the strain to tolerate the inhibitors.
Fermentation strategies should avoid cell toxicity of glycerol and autolysis processes. This can be achieved by following techniques like fed-batch fermentation,
sequential fermentation, and immobilised cells. The most suitable downstream technique should be employed for purification of 1,3-PDO in order to make the process economically viable.
How Celignis Can Help
At Celignis, we have expertise and experience in performing anaerobic fermentations
and developing fermentation strategies to achieve high cell mass and in situ product recovery techniques. We can screen your feedstock for 1,3-Propanediol production,
adapt the strain to any inhibitors present in the feed, and develop bespoke fermentation and product recovery process.
Our team of experts will innovate with you for you.
Lactic acid bacteria are very sensitive and require complex nutrient media compared to other bacillus species that can produce lactic acid.
Hence, industries are constantly looking for fungi and bacillus strains that have low nutrient requirements and can tolerate acidic pH.
At Celignis we have expertise and experience in screening lactic acid bacteria for the selection of substrate- and product-tolerant strains. We can also develop:
fed-batch strategies to achieve high cell mass, and in situ product recovery techniques to separate lactic acid from the fermentation broth. We will
work with you and develop bespoke lactic acid fermentation methods for your feedstock or industrial waste streams.
Propionic acid can be produced from a variety of substrates such as glucose, ethanol, lactose, glycerol, and pectin. So, several industrial streams
will be suitable to produce propionic acid, if the bacteria are adapted to the inhibitors present in the waste streams and fermentation is optimised to
achieve high cell densities and high product concentration.
We can perform anaerobic fermentations and develop fermentation strategies to achieve high cell mass and in-situ product recovery techniques.
We can screen your feedstock for propionic acid production, adapt the strain to any inhibitors present in the feed, and develop bespoke fermentation
and product recovery processes.
Butyric acid is biologically produced by Clostridium species and like other acids (acetic acid, lactic acid, propionic acid),
it is toxic to the bacteria after a certain concentration. Hence, the product titres are generally low which makes downstream expensive.
In order to reduce these costs, in situ removal of butyric acid can be developed. In situ removal strategies are not yet industrially applied for butyric acid, but
it is a key area where progress has to be made to make the process economically sustainable.
At Celignis, we have strong expertise in Clostridial fermentation. We can isolate and or adapt the strains that are suitable for your feedstock and can
develop fermentation strategies to reduce substrate and product inhibition. We will innovate with you for you.
Butanol fermentation is also one of the difficult fermentation pathways due to substrate and product inhibition. However, this can be
avoided by fed-batch fermentation and in-situ stripping of butanol. Also, reducing the feedstock and enzyme costs will make the process more
economically viable. Through using industrial waste streams (negative costs), enzymatic cocktails tailored for the feedstock (allowing low-enzyme dosages), and
with high sugar yields, the right choice of microbial strain, and an effective in-situ removal technology, it is possible to develop an economically-viable butanol process.
At Celignis, we have considerable expertise in Clostridial fermentation and especially butanol fermentation.
Our Chief Innovation Officer Dr Lalitha Gottumukkala has extensively worked in this area and has isolated novel strains and developed novel
methods for non-acetogenic butanol fermentation as part of her PhD.
PHA is one of the most complicated fermentation processes, but the possibility to use mixed microbial cultures and the avoidance of sterilisation costs
makes it an interesting process to produce bioplastics. Also, PHA blends are becoming more and more popular to increase the tensile strength and
flexibility of the polymer, possible by using mixed culture substrates.
At Celignis, we have experience in enrichment of desired microorganisms, fed-batch and continuous fermentations
with cell-recycling. We can design and develop the most suitable process for your feedstock by using mixed or mono-culture fermentations.
We can also develop cost-efficient downstream processing steps for efficient PHA extraction by using non-toxic and environmentally friendly techniques.
Yeast fermentation is one of the oldest fermentations and is used in everyday life to produce a variety of commodity products including bread, beer, wine,
cheese, and soy sauce. A few decades ago, yeast gained popularity as an industrial strain for biorefinery and biofuel applications.
Algal cultivation is complicated and requires optimisation to achieve high biomass yields. Algal biomass production depends on nutrient uptake and
other environmental conditions such as temperature, pH, salt concentration etc. It is important to select the strain based on the type of
production (open ponds, photobioreactors), feedstock and application. We have particular expertise in the evaluation and optimisation of algae thorugh
our Chief Innovation Officer, Lalitha, who is currently undertaking a Marie-Curie funded project at Celignis on this topic.
We are available to answer any questions you may have on how to get high value chemicals and biofuels from biomass through fermentation processes.
Just get in touch with us by sending us an email info@celignis.com, giving us a call at (+353) 61 371 725, or through
our contact form.
We detail the important contributions that Celignis can make in the 2022 topics
Today the Circular Bio-based Europe Joint Undertaking (CBE-JU) released their
annual work programme and budget for 2022. There is an indicative budget of 120 million Euros which
will fund a total of 12 topics, comprising 5 Research and Innovation Actions (RIAs), 1 Coordinating and Supporting Action (CSA), 4 Demonstration-Scale projects, and 2 Flagships.
Celignis is a partner in 3 ongoing CBE projects: UNRAVEL
and PERFECOAT are RIA (Research and Innovation Action) projects, whilst VAMOS is an Innovation Action project.
Additionally, Celignis was a partner in the BIOrescue RIA project which was completed in 2019.
Click
Presentation and Exhibition Stand at IBioIC Annual Conference
We will be exhibiting at the event in Glasgow, UK, on June 6-7
The IBioIC Annual Conference makes a welcome return to Glasgow. The title of the event is "The Just Transition of Biotechnology - How sustainable development in industrial biotechnology can secure Scotland's path to Net Zero".
We are pleased to be exhibiting at the event, on June 6-7 at the Technology & Innovation Centre in Glasgow, UK. We look forward to discussing our range of analytical and bioprocess development services for bioeconomy stakeholders.
Our CIO Lalithawill also be giving a presentation at the event about our participation in EnXylaScope a collaborative research project funded by the the Horizon Europe programme.
Here you can download soft copies of the brochure,
It explains the background to the project and its targets for xylan extraction and modification
An introductory video to the EnXylaScope project (funded by Horizon Europe and technically led by Celignis) has been released. It has been prepared by our fellow consortium partner Loba and details the rationale for the project and the technical advances that the project will make, leading to an efficient and commercially-viable process for the extraction of xylan and its modification so that it can be incorporated into a range of consumer products.
Click here to learn more about the project and Celignis's central contributions to it and here to view the video on YouTube.
It details the exciting progress already made in the project
The newsletter covers the project's activities in the search for xylan debranching enzymes (a WP with extensive involvement from Celignis) and on the extraction and modification of xylans for consumer products (a WP led by Celignis). Click here to view the newsletter.
Thanks for contacting us. One of our representatives will be in contact with you shortly regarding your inquiry. If you ever have any questions that require immediate assistance, please call us at +353 61 371 725.
Contact Us
Somthing went wrong! Please call us at
+353 61 371 725 or send us a email at
info@celignis.com with your inquiry.
NOTE : We use cookies to improve our website and to give you the best experience. If you continue using our website, we'll assume that you are happy to receive all cookies on this website.