• Analytes Determined at Celignis
    Xylanase Activity



Click here to place an order for determining Xylanase Activity.

Request a QuoteXylanase Activity Content

Analysis Packages for Xylanase Activity

The Celignis Analysis Package(s) that determine this constituent are listed below:

Equipment Used for Xylanase Activity Analysis



Ion Chromatography

A Dionex ICS-3000 system that is equipmed with electrochemical, conductivity, and ultraviolet-visible detectors.



Incubated Shaker

This is used in analysis packages involving enzymes, for example in the enzymatic hydrolysis of lignocellulosic biomass.

Publications on Xylanase Activity By The Celignis Team

Vodonik M, Vrabec K, Hellwig P, Benndrof D, Sezun M, Gregori A, Gottumukkala L.D, Andersen R.C, Reichel U (2018) Valorisation of deinking sludge as a substrate for lignocellulolytic enzymes production by Pleurotus ostreatus, Journal of Cleaner production 197(1): 253-263

Disposal of waste sludges produced in large amounts in the pulp and paper industry imposes significant environmental and economical problems. One strategy to address these issues involves revalorization of paper mill sludges by their application as substrates for microbial production of biotechnologically relevant enzymes. The application of lignocellulolytic enzymes in paper, textile and bioenergy industries is encouraged in order to decrease chemicals and energy consumptions. In the following work, deinking sludge was assessed as a substrate for production of lignocellulases. Based on the results of growth and activity screenings, Pleurotus ostreatus PLAB was chosen as the most promising candidate among 30 tested strains and its secretome was further studied by quantitative enzyme assays and mass spectrometry. While endoglucanase and xylanase activities detected in P. ostreatus secretome produced on deinking sludge were similar to activities of cultures grown on other lignocellulosic substrates, average laccase activity was significantly higher (46?000 U/kg DIS). Mass spectrometry identification of the most prominent proteins in the secretome of the target strain confirmed that significant amounts of different lignin-modifying oxidases were produced on this substrate despite its low lignin content, indicating the presence of other inducible compounds. The findings of this study suggest deinking sludge may represent a good substrate for fungal production of the aforementioned enzymes with broad biotechnological applications, including bioremediation, paper and bioenergy industries.

Thomas L, Joseph A, Gottumukkala L.D. (2014) Xylanase and cellulase systems of Clostridium sp.: an insight on molecular approaches for strain improvement, Bioresource technology 158: 343-350

Bioethanol and biobutanol hold great promise as alternative biofuels, especially for transport sector, because they can be produced from lignocellulosic agro-industrial residues. From techno-economic point of view, the bioprocess for biofuels production should involve minimal processing steps. Consolidated bioprocessing (CBP), which combines various processing steps such as pretreatment, hydrolysis and fermentation in a single bioreactor, could be of great relevance for the production of bioethanol and biobutanol or solvents (acetone, butanol, ethanol), employing clostridia. For CBP, Clostridium holds best promise because it possesses multi-enzyme system involving cellulosome and xylanosome, which comprise several enzymes such as cellulases and xylanases. The aim of this article was to review the recent developments on enzyme systems of clostridia, especially xylanase and cellulase with an effort to analyse the information available on molecular approaches for the improvement of strains with ultimate aim to improve the efficiencies of hydrolysis and fermentation.

Additional Material



...