• Analytes Determined at Celignis
    Nitrogen

The Nitrogen content of a sample is the contribution that Nitrogen makes to the total mass of the sample. Click here for more information on the elemental composition of biomass.

We determine the nitrogen content according to the procedures outlined in European Standard EN 15104:2011 ("Solid biofuels - Determination of total content of carbon, hydrogen and nitrogen - Instrumental methods") and we use an Elementar Vario MACRO Cube elemental analyser which has been designed to satisfy the requirements of this method.

We report the nitrogen content on a dry-mass basis as well as on an as-received basis and a dry ash-free basis (providing that the ash content and as-received moisture content of the sample have also been determined). We use the calculations outlined in European Standard EN 15296:2011 ("Solid biofuels - Conversion of analytical results from one basis to another") to carry out these conversions.


Click here to place an order for determining Nitrogen.

Request a QuoteNitrogen Content

Analysis Packages for Nitrogen

The Celignis Analysis Package(s) that determine this constituent are listed below:

Analytical Procedure for Nitrogen


☑ Step 1: Elemental Analysis of the Sample

Equipment Used for Nitrogen Analysis



Elemental Analyser

A Vario MACRO cube elemental analyser is used for the quantification of the Carbon, Hydrogen, Nitrogen, and Sulphur content of samples.

Publications on Nitrogen By The Celignis Team

Wnetrzak, R., Hayes, D. J. M., Jensen, L. S., Leahy, J. J., Kwapinski, W. (2015) Determination of the higher heating value of pig manure, Waste and Biomass Valorization 6(3): 327-333

Link

The ability of using novel method of near infrared (NIR) spectra to predict the composition and higher heating value (HHV) of dry pig manure was examined. Number of pig manure solid fractions variously pre-treated samples were collected in Denmark, from different pig slurry treatment plants (using mechanical or chemical-mechanical separation) and then analysed for their energy values. These values were determined by conventional method using bomb calorimetry and also calculated based on ultimate analysis. NIR spectra method was successfully applied and reasonable R2 values were obtained for the independent prediction set for nitrogen, ash, and the HHV. NIR also showed ability for predicting which type of treatment plants the samples came from. In addition, new empirical equations, based on ultimate analyses of pig manure solids used for prediction of the HHV was established.

Hayes, D. J. M. (2013) Mass and Compositional Changes, Relevant to Biorefining, in Miscanthus x giganteus Plants over the Harvest Window, Bioresource Technology 142: 591-602

Link

Miscanthus plants were sampled from several plantations in Ireland over the harvest window (October-April). These were separated into their anatomical components and the loss of leaves monitored. Three distinct phases were apparent: there was minimal loss in the "Early" (October to early December) and "Late" (March and April) phases, and rapid leaf loss in the interim period. Samples were analysed for constituents relevant to biorefining. Changes in whole-plant composition included increases in glucose and Klason lignin contents and decreases in ash and arabinose contents. These changes arose mostly from the loss of leaves, but there were some changes over time within the harvestable plant components. Although leaves yield less biofuel than stems, the added biomass provided by an early harvest (31.9-38.4%) meant that per hectare biofuel yields were significantly greater (up to 29.3%) than in a late harvest. These yields greatly exceed those from first generation feedstocks.

Hayes, D. J. M. (2012) Development of near infrared spectroscopy models for the quantitative prediction of the lignocellulosic components of wet Miscanthus samples, Bioresource Technology 119: 393-405

Link

Miscanthus samples were scanned over the visible and near infrared wavelengths at several stages of processing (wet-chopped, air-dried, dried and ground, and dried and sieved). Models were developed to predict lignocellulosic and elemental constituents based on these spectra. The dry and sieved scans gave the most accurate models; however the wet-chopped models for glucose, xylose, and Klason lignin provided excellent accuracies with root mean square error of predictions of 1.27%, 0.54%, and 0.93%, respectively. These models can be suitable for most applications. The wet models for arabinose, Klason lignin, acid soluble lignin, ash, extractives, rhamnose, acid insoluble residue, and nitrogen tended to have lower R(2) values (0.80+) for the validation sets and the wet models for galactose, mannose, and acid insoluble ash were less accurate, only having value for rough sample screening. This research shows the potential for online analysis at biorefineries for the major lignocellulosic constituents of interest.

Hayes, D. J. M. (2011) Analysis of Lignocellulosic Feedstocks for Biorefineries with a Focus on The Development of Near Infrared Spectroscopy as a Primary Analytical Tool, PhD Thesis832 pages (over 2 volumes)

Download

The processing of lignocellulosic materials in modern biorefineries will allow for the production of transport fuels and platform chemicals that could replace petroleum-derived products. However, there is a critical lack of relevant detailed compositional information regarding feedstocks relevant to Ireland and Irish conditions. This research has involved the collection, preparation, and the analysis, with a high level of precision and accuracy, of a large number of biomass samples from the waste and agricultural sectors. Not all of the waste materials analysed are considered suitable for biorefining; for example the total sugar contents of spent mushroom composts are too low. However, the waste paper/cardboard that is currently exported from Ireland has a chemical composition that could result in high biorefinery yields and so could make a significant contribution to Irelandís biofuel demands.

Miscanthus was focussed on as a major agricultural feedstock. A large number of plants have been sampled over the course of the harvest window (October to April) from several sites. These have been separated into their anatomical fractions and analysed. This has allowed observations to be made regarding the compositional trends observed within plants, between plants, and between harvest dates. Projections are made regarding the extents to which potential chemical yields may vary. For the DIBANET hydrolysis process that is being developed at the University of Limerick, per hectare yields of levulinic acid from Miscanthus could be 20% greater when harvested early compared with a late harvest.

The wet-chemical analysis of biomass is time-consuming. Near infrared spectroscopy (NIRS) has been developed as a rapid primary analytical tool with separate quantitative models developed for the important constituents of Miscanthus, peat, and (Australian) sugarcane bagasse. The work has demonstrated that accurate models are possible, not only for dry homogenous samples, but also for wet heterogeneous samples. For glucose (cellulose) the root mean square error of prediction (RMSEP) for wet samples is 1.24% and the R2 for the validation set ( ) is 0.931. High accuracies are even possible for minor analytes; e.g. for the rhamnose content of wet Miscanthus samples the RMSEP is 0.03% and the is 0.845. Accurate models have also been developed for pre-treated Miscanthus samples and are discussed. In addition, qualitative models have been developed. These allow for samples to be discriminated for on the basis of plant fraction, plant variety (giganteus/non-giganteus), harvest-period (early/late), and stand-age (one-year/older).

Quantitative NIRS models have also been developed for peat, although the heterogeneity of this feedstock means that the accuracies tend to be lower than for Miscanthus. The development of models for sugarcane bagasse has been hindered, in some cases, by the limited chemical variability between the samples in the calibration set. Good models are possible for the glucose and total sugars content, but the accuracy of other models is poorer. NIRS spectra of Brazilian bagasse samples have been projected onto these models, and onto those developed for Miscanthus, and the Miscanthus models appear to provide a better fit than the Australian bagasse models.

Additional Material

We can determine the Nitrogen content of biomass, click here to learn more about our various biomass analysis methods.

We can determine the Nitrogen content of pyrolysis bio-oils, click here to learn more about our various methods for analysing bio-oil.

We can determine the Nitrogen content of seaweed, click here to learn more about our various methods for analysing seaweed.



...