• Analytes Determined at Celignis
    Pore Size Distribution (Using Nitrogen)



Click here to place an order for determining Pore Size Distribution (Using Nitrogen).

Request a QuotePore Size Distribution (Using Nitrogen) Content

Analysis Packages for Pore Size Distribution (Using Nitrogen)

The Celignis Analysis Package(s) that determine this constituent are listed below:

Equipment Used for Pore Size Distribution (Using Nitrogen) Analysis



Surface Area and Porosity Analyser

NOVA 2200e Surface Area and Pore Size Analyser

Publications on Pore Size Distribution (Using Nitrogen) By The Celignis Team

Abdeldayem, O.M., Dupont, C., Ferrasa, D. and Kennedyab, M. (2025) An experimental and numerical investigation of secondary char formation in hydrothermal carbonization: revealing morphological changes via hydrodynamics, RSC Advances 15: 12723-12738

Link

Hydrothermal carbonization (HTC) research has mainly focused on primary char production, with limited attention to secondary char, which is formed through polymerization and condensation of dissolved organic compounds in the liquid phase. This research aims to address this gap via an experimental investigation of the impact of stirring on the mass and carbon balance of HTC reaction products, surface functional groups, and surface morphology of secondary char, using fructose as a model compound. A 3D hydrodynamic simulation model was developed for a two-liter HTC stirred reactor. The experimental results indicated that stirring did not significantly influence the pH, mass, carbon balance, and surface functional groups of secondary char produced under the range of experimental conditions (180 C, 10% biomass to water (B/W) ratio, and a residence time of 0-120 min) studied. Nonetheless, it was observed that a stirring rate of 200 rpm influenced the morphology and shape of the secondary char microspheres, leading to a significant increase in their size i.e., from 1-2 um in unstirred conditions compared with 70 um at a stirring rate of 200 rpm. This increase in size was attributed to the aggregation of microspheres into irregular aggregates at stirring rates > 65 rpm and residence times > 1 h. The hydrodynamic model revealed that high turbulence of Re > 104 and velocities > 0.17 m s-1 correlated with regions of secondary char formation, emphasizing their role in particle aggregation. Particle aggregation is significant above a stirring rate of 65 rpm, which corresponds to the onset of turbulent flow in the reactor. Finally, a mechanism is proposed, based on reactor hydrodynamics under stirred conditions, that explains secondary char deposition on the reactor walls and stirrer.

Additional Material

We can determine the Pore Size Distribution (Using Nitrogen) content of biomass, click here to learn more about our various biomass analysis methods.



...