Click here to place an order for determining Endoglucanase Activity.
Request a QuoteEndoglucanase Activity Content
A Dionex ICS-3000 system that is equipmed with electrochemical, conductivity, and ultraviolet-visible detectors.
This is used in analysis packages involving enzymes, for example in the enzymatic hydrolysis of lignocellulosic biomass.
A recently discovered thermophilic isolate, Geobacillus sp. R7, was shown to produce a thermostable cellulase with a high hydrolytic potential when grown on extrusion-pretreated agricultural residues such corn stover and prairie cord grass. At 70°C and 15–20% solids, the thermostable cellulase was able to partially liquefy solid biomass only after 36 h of hydrolysis time. The hydrolytic capabilities of Geobacillus sp. R7 cellulase were comparable to those of a commercial cellulase. Fermentation of the enzymatic hydrolyzates with Saccharomyces cerevisiae ATCC 24860 produced ethanol yields of 0.45–0.50 g ethanol/g glucose with more than 99% glucose utilization. It was further demonstrated that Geobacillus sp. R7 can ferment the lignocellulosic substrates to ethanol in a single step that could facilitate the development of a consolidated bioprocessing as an alternative approach for bioethanol production with outstanding potential for cost reductions. |
The focus of this study was on the solid state fermentation (SSF) of cellulase enzymes produced by Aspergillus niger SB-2 utilizing lignocellulosic agricultural waste as carbon and energy source. Optimization of the SSF media and parameters resulted in a 32% increase in the cellulase activity. Maximum enzyme production of 1,325±7.1 IU/g dry fermented substrate was observed on wheat bran and rice bran supplemented with malt dextrin and soybean meal at pH 6 and 300C after incubation for 120 h. The cellulase activities presented here appear to be among the highest reported in literature for A. niger to date. The A. niger SB-2 cellulase was partially purified and characterized. Zymogram analysis of the sodium dodecyl sulphate-polyacrylamide gel electrophoresis revealed two bands of cellulase activity with molecular weights of 30 and 45 kDa. To the best of our knowledge, a 45 kDa cellulase from A. niger has not been previously described in literature. The enzyme was active in a broad pH (4-7) and temperature (30-550C) range with a pH optimum of 6 and a temperature optimum of 450C. At 50 and 600C, the cellulase half life was 12.4 and 4.1 h, respectively. Dithiothreitol, iodoacetamide and Mg+2 acted as activators of cellulase activity. Kinetics studies indicated that the substrate specificity of A. niger SB-2 cellulase was 18% higher on insoluble cellulose than on soluble cellulose. Therefore, the cellulase complex of A. niger SB-2 would be useful in bioprocessing applications where efficient saccharification of lignocellulosic biomass is required. |