• Use of Biochar
    For Carbon Sequestration
    Relevant Tests at Celignis

Background

Carbon sequestration refers to the capture and long-term storage of atmospheric carbon dioxide (CO2), a major greenhouse gas contributing to global warming and climate change.

In recent decades the production and use of biochar has been considered as a strategy for reducing the levels of carbon dioxide in the atmosphere. This can potentially be achieved in direct and indirect ways.

The main reason that biochar is considered to be a direct approach for carbon sequestration is that the carbon in biochar is mainly composed of recalcitrant carbon, which is resistant to degradation by microorganisms and can persist in the environment for hundreds or even thousands of years. By converting biomass into biochar, the carbon in the biomass is stabilized and locked away, preventing it from being rapidly released back into the atmosphere as CO2 which would otherwise be the case as the biomass feedstock is consumed or decomposes. Hence, providing that the biomass that is used to produce the biochar is replenished, the net effect of growing biomass for the production of biochar is that atmospheric CO2 is sequestered in the soil in a stable form.


Biochar can potentially indirectly reduce anthropogenic greenhouse gas emissions by improving soil quality through its enhancement of nutrient and water retention. This results in a reduction in the acidity of the soil and provides a more favourable habitat for beneficial soil microorganisms. These improvements can increase agricultural productivity and potentially reduce the need for synthetic fertilizers, a source of greenhouse gas emissions.

Additionally, biochar production can utilize various types of waste biomass, including agricultural residues, forestry waste, and urban green waste, so diverting these materials from landfills or open burning, both of which can produce greenhouse gases.


Effects of Pyrolysis Conditions on Biochar Carbon Sequestration Potential

Temperature

Pyrolysis temperature is a critical factor that influences the carbon sequestration potential of biochar. Higher pyrolysis temperatures typically lead to the formation of biochars with higher carbon contents and greater recalcitrance, as more volatile compounds are released, and the remaining carbon structure becomes more condensed and stable. However, very high temperatures can result in excessive carbon loss through the formation of gaseous products, reducing the carbon sequestration potential of the biochar.

Heating Rate

The heating rate, or the rate at which the biomass is heated during pyrolysis, can also influence the carbon sequestration potential of biochar. Rapid heating rates can lead to the production of biochars with higher carbon contents. However, excessively fast heating rates can cause uneven pyrolysis and the formation of biochars with lower carbon sequestration potential.

Residence Time

Longer residence times can result in more complete pyrolysis, potentially leading to the formation of biochars with higher carbon contents and greater stability. However, excessive residence times may lead to the production of biochars with lower carbon sequestration potential due to an increased amount of the biomass being volatilised.

Choice of Feedstock

Different feedstocks have varying carbon contents, which can affect the amount of carbon sequestered in the resulting biochar. Generally, feedstocks with higher carbon contents, such as woody biomass, will produce biochars with greater carbon sequestration potential than those with lower carbon content, such as herbaceous or aquatic plants.

Celignis Tests to Assess Carbon Sequestration Potential of Biochar

Proximate and Elemental Analysis

We can analyse biochar for its fixed carbon and volatile matter contents. Typically, biochars with higher fixed carbon contents tend to be more stable over longer periods of time and less likely to be degraded and return CO2 to the atmosphere.

We can also determine the carbon content of biochar using Dumas analysis and can differentiate between organic carbon and inorganic carbon. A higher organic carbon content indicates a greater potential for carbon sequestration.

Stability and Decomposition Tests

These tests assess the resistance of biochar to microbial degradation and its potential longevity in the environment. Stability tests may involve monitoring CO2 emissions from biochar-amended soil over time or using techniques such as the incubation method, where biochar is mixed with soil and incubated under controlled conditions to measure CO2 emissions.

Carbon Sequestration Efficiency

This metric compares the amount of carbon content sequestered in the biochar to the total carbon content in the original biomass feedstock. It can be used to evaluate the effectiveness of different feedstocks and pyrolysis conditions in producing biochar with high carbon sequestration potential.

Additional Information on Biochar Carbon Sequestration Potential

Feel free to get in touch with us if you have any questions about our analytical services to evaluate thje carbon sequestration potential of biochar. Relevant members of the Celignis biochar team will be happy to assist. Those team members with the most experience with undertaking these tests and interpreting the resulting data are listed below.

Sajna KV

Bioanalysis Developer

PhD

<p style="text-align: left;">Our Biomass Detective! Designs, tests, optimizes and validates robust analytical methods for properties of relevance to the various biochar market applications.</p>

Dan Hayes

Celignis CEO And Founder

PhD (Analytical Chemistry)

<p style="text-align: left;">Dreamer and achiever. Took Celignis from a concept in a research project to being the bioeconomy's premier provider of analytical and bioprocessing expertise.</p>

Lalitha Gottumukkala

Chief Innovation Officer

PhD

<p style="text-align: left;">A serial innovator managing multiple projects. Has particular expertise related to the upgrading of biochar and on the assessment of its impact on plant productivity and soil health.</p>



Other Celignis Tests and Services for Biochar

Global Recognition as Biomass and Biochar Experts

Celignis provides valued services to over 1000 clients. We understand how the focus of biochar projects can differ between countries and have advised a global network of clients. We also have customs-exemptions for samples sent to us allowing us to quickly get to work no matter where our clients are based.

Further Info...




Feedstock Evaluation

Our analysis packages can screen biochar feedstocks. We can estimate biochar yield and quality using feedstock chemical composition and can estimate biochar composition using the ultimate and major/minor elements analyses of the feedstock. With TGA analysis we can also monitor feedstock behaviour under pyrolysis conditions.

Further Info...




Biochar Production

We can produce biochar samples from your feedstocks using a wide range of temperatures, heating rates, and residence times. We can formulate a Design of Experiments (DoE) to study the effects of varying process parameters on biochar yield and quality and can optimise these outputs according to your desired biochar market applications.

Further Info...




Biochar Analysis

We have an extensive array of analysis packages to evaluate the suitability of biochar for a range of applications. These analyses cover properties relevant to combustion, soil amendment, feed, and biomaterials. Our reports compare the results against internationally-recognised limits for using the biochar in specific end-products.

Further Info...




Biochar Combustion Properties

Biochar can be a superior fuel versus virgin biomass due to its greater carbon content and energy density. We offer a wide array of analysis packages to fully evaluate biochar as a fuel. For example, we can determine both organic and inorganic carbon and can monitor the behaviour of the biochar ash over wide temperature ranges.

Further Info...




Soil Amendment & Plant Growth Trials

We can test biochar for several properties (e.g. water holding capacity, electrical conductivity etc.) relevant to its use in soil amendment. We can also grow plants in biochar-amended soils and assess the impacts of this approach on germination, plant growth, plant health, and soil biology.

Further Info...




Analysis of PAHs in Biochar

Polycyclic aromatic hydrocarbons can be formed during the pyrolysis of biomass and accumulate in biochar, leading to potential risks to the environment. We can accurately quantify a range of different PAHs and determine if their concentrations exceed regulatory limits. We can also develop strategies to reduce the amount of PAHs in biochar.

Further Info...




Surface Area and Porosity of Biochar

The suitable markets for a biochar are often greatly dependent on its surface area and pore size-distrubtion. We provide detailed reports on biochar surface area and porosity and can provide guidance on the implications of the results. We can also work on strategies to increase the surface area and modify the pore-size distribution of biochar.

Further Info...




Thermogravimetric Analysis of Biochar

TGA is a powerful analytical technique for the study of biochars because it allows us to examine the thermal stability of the material as a function of temperature. The thermal stability of biochars is an important factor to consider when evaluating their potential use as a soil amendment or for carbon sequestration.

Further Info...




Biochar Upgrading

There are several different methods (covering physical, chemical and biologial routes) by which we can upgrade your biochar in order to increase its value and make it more suitable for the desired market applications. We are able to fully characterise the changes in physicochemical properties associated with upgrading.

Further Info...




Technoeconomic Analyses of Biochar Projects

Our TEA experts work with you to evaluate the economic prospects of your biochar facility, considering various scale, technology, and feedstock options. We apply accurate costing models to determine CAPEX/OPEX of simulated and pilot scale processes which are then used to determine key economic indicators (e.g. IRR, NPV).

Further Info...




Research Project Collaborations

Celignis is active in a number of important research projects focused on biomass valorisation. Biochar is a key component in some of these ongoing projects as well as in several prior projects. We are open to participating in future collaborative research projects where our extensive infrastructure and expertise in biochar can be leveraged.

Further Info...


Publications on Biochar Digestion By The Celignis Team

Abdeldayem, O.M., Dupont, C., Ferrasa, D. and Kennedyab, M. (2025) An experimental and numerical investigation of secondary char formation in hydrothermal carbonization: revealing morphological changes via hydrodynamics, RSC Advances 15: 12723-12738

Link

Hydrothermal carbonization (HTC) research has mainly focused on primary char production, with limited attention to secondary char, which is formed through polymerization and condensation of dissolved organic compounds in the liquid phase. This research aims to address this gap via an experimental investigation of the impact of stirring on the mass and carbon balance of HTC reaction products, surface functional groups, and surface morphology of secondary char, using fructose as a model compound. A 3D hydrodynamic simulation model was developed for a two-liter HTC stirred reactor. The experimental results indicated that stirring did not significantly influence the pH, mass, carbon balance, and surface functional groups of secondary char produced under the range of experimental conditions (180 C, 10% biomass to water (B/W) ratio, and a residence time of 0-120 min) studied. Nonetheless, it was observed that a stirring rate of 200 rpm influenced the morphology and shape of the secondary char microspheres, leading to a significant increase in their size i.e., from 1-2 um in unstirred conditions compared with 70 um at a stirring rate of 200 rpm. This increase in size was attributed to the aggregation of microspheres into irregular aggregates at stirring rates > 65 rpm and residence times > 1 h. The hydrodynamic model revealed that high turbulence of Re > 104 and velocities > 0.17 m s-1 correlated with regions of secondary char formation, emphasizing their role in particle aggregation. Particle aggregation is significant above a stirring rate of 65 rpm, which corresponds to the onset of turbulent flow in the reactor. Finally, a mechanism is proposed, based on reactor hydrodynamics under stirred conditions, that explains secondary char deposition on the reactor walls and stirrer.

Kwapinska, M., Sommersacher, P., Kienzl, N., Retschitzegger, S., Lagler, J., Horvat, A. and Leahy, J.J. (2024) Release of N-containing compounds during pyrolysis of milk/dairy processing sludge - Experimental results and comparison of measurement techniques, Journal of Analytical and Applied Pyrolysis 178: 106391

Link

A dried dairy processing sludge (sludge from wastewater treatment of an effluent from a milk processing plant) was pyrolysed in a single-particle reactor at different temperatures from 400 C to 900 C. NH3 and HCN were measured online and offline by means of FTIR as well as by cumulative sampling in impinger bottles (in 0.05 M H2SO4 and 1 M NaOH, respectively) and analysed by photometric method. NO and NO2 were measured online using a nitric oxide analyser while N2O was measured by FTIR. Nitrogen (N) in the sludge and in the remaining char, char-N, was determined. Moreover, tar content in pyrolysis gas was measured and tar-N was determined. The results with respect to N mass balance closure are discussed. The different measurements techniques are compared. For pyrolysis at 520 and 700 nitrogen in the gas phase was mainly contained as N2 (36 % and 40 % respectively), followed by NH3 (15 % and 18 %), tar-N (10 % and 9 %), HCN (1 % and 3 %), NO (1 %) and NO2 (0.2 %). The dairy processing sludge has very specific properties with organic-N present predominantly as proteins and a high content of inherent Ca. These characteristics affected the distribution of N. The amount of char-N was higher while the amount of tar-N lower than for sewage sludge from literature, at comparable pyrolysis temperature.

Kwapinska, M., Pisano, I. and Leahy, J.J. (2023) Hydrothermal carbonization of milk/dairy processing sludge: Fate of plant nutrients, Journal of Environmental Management 345: 118931

Link

Dairy processing sludge (DPS) is a byproduct generated in wastewater treatment plants located in dairy (milk) processing companies (waste activated sludge). DPS presents challenges in terms of its management (as biosolids) due to its high moisture content, prolonged storage required, uncontrolled nutrient loss and accumulation of certain substances in soil in the proximity of dairy companies. This study investigates the potential of hydrothermal carbonization (HTC) for recovery of nutrients in the form of solid hydrochar (biochar) produced from DPS originating from four different dairy processing companies. The HTC tests were carried out at 160 C, 180 C, 200 C and 220 C, and a residence time of 1h. The elemental properties of hydrochars (biochars), the content of primary and secondary nutrients, as well as contaminants were examined. The transformation of phosphorus in DPS during HTC was investigated. The fraction of plant available phosphorus was determined. The properties of hydrochar (biochar) were compared against the European Union Fertilizing Products Regulation. The findings of this study demonstrate that the content of nutrient in hydrochars (biochars) meet the requirements for organo-mineral fertilizer with nitrogen and phosphorus as the declared nutrients (13.9-26.7%). Further research on plant growth and field tests are needed to fully assess the agronomic potential of HTC hydrochar (biochar).

Kwapinska, M., Pisano, I. and Leahy, J.J. (2023) Preliminary assessment of pyrolysis biochar derived from milk/dairy processing sludge as a potential component of fertilizers, ACS Sustainable Chemistry & Engineering 11(6): 2345-2353

Link

Disposal of waste-activated sludge [dairy processing sludge, (DPS)] from wastewater treatment plants located in milk processing companies is an increasing concern. DPS is usually applied to farmlands in the vicinity of the dairy companies. This practice is becoming unsustainable due to uncontrolled nutrient loss and potential soil contamination. We propose to recover nutrients in the form of biochar. This paper examines the properties of biochars obtained from slow pyrolysis of DPS. DPS samples were pyrolyzed at laboratory and pilot scale at 600 and 700 C. The elemental properties of biochars, the content of primary and secondary nutrients, as well as contaminants were examined and compared against the European Union Fertilizing Products Regulation. The biochars meet the specified limits for hydrogen-to-organic carbon ratio, chloride, and polycyclic aromatic hydrocarbons intended for gasification and pyrolysis component category materials. In six out of eight biochars, the content of phosphorus (P) as a single declared nutrient and the level of contaminants meet those required for an organo-mineral fertilizer. Only two biochars meet the required concentrations of nitrogen, phosphorus, and potassium. A minimum solid content of 30% in DPS is required to make the process of biochar production energetically sustainable.

Kwapinska, M., Horvat, A., Agar, D.A. and Leahy, J.J. (2021) Energy recovery through co-pyrolysis of wastewater sludge and forest residues-the transition from laboratory to pilot scale, Journal of Analytical and Applied Pyrolysis 158: 105283

Link

Anaerobically digested sewage sludge mixed with forest residues was pyrolysed at 800 C, at laboratory and pilot scale. The study quantified differences in char and gas yields for tests carried out in a simple fixed bed laboratory reactor and rotating retort pyrolyser at pilot scale, when the residence time of feedstock was 10 min in both cases. The yield of char from pilot scale was 4 % lower than from laboratory scale while the yield of gas was 15.7 % higher. During the pilot scale pyrolysis of anaerobically digested sewage sludge blended with forest residues the gas quality for energy recovery applications was assessed and the fate of impurities (tar, NH3 and H2S) was investigated. The raw pyrolysis gas contained 14.6 g/Nm3 of tar, 36.9 g/Nm3 of NH3 and 793 ppm of H2S. Sixteen N-containing tar species were identified of which pyridine, propenenitrile, 2-methyl-, benzonitrile, and indole are found to be the most abundant. The yield of N-containing tar compounds accounted for approx. 12 % of total tar content. Conditioned pyrolysis gas contained 7.1 g/Nm3 of tar, 0.036 g/Nm3 of NH3 and 119 ppm of H2S. Benzene was by far the most abundant tar compound followed by toluene and styrene. The specifications of the used internal combustion engine were exceeded due to the sum of tar compounds such as fluorantrene and pyrene with 4+ aromatic rings (at 0.0015 g/Nm3) and NH3 content The effectiveness and sustainability of energy recovery in wastewater treatment can be improved using forest industry by-products.

Kozyatnyk, I., Oesterle, P., Wurzer, C., Masek, O. and Jansson (2021) Removal of contaminants of emerging concern from multicomponent systems using carbon dioxide activated biochar from lignocellulosic feedstock, Bioresource Technology 340: 125561

Link

Adsorption of six contaminants of emerging concern (CECs) - caffeine, chloramphenicol, carbamazepine, bisphenol A, diclofenac, and triclosan - from a multicomponent solution was studied using activated biochars obtained from three lignocellulosic feedstocks: wheat straw, softwood, and peach stones. Structural parameters related to the porosity and ash content of activated biochar and the hydrophobic properties of the CECs were found to influence the adsorption efficiency. For straw and softwood biochar, activation resulted in a more developed mesoporosity, whereas activation of peach stone biochar increased only the microporosity. The most hydrophilic CECs studied, caffeine and chloramphenicol, displayed the highest adsorption (22.8 and 11.3 mg g-1) onto activated wheat straw biochar which had the highest ash content of the studied adsorbents (20 wt%). Adsorption of bisphenol A and triclosan, both relatively hydrophobic substances, was highest (31.6 and 30.2 mg g-1) onto activated biochar from softwood, which displayed a well-developed mesoporosity and low ash content.

Wurzer, C. and Masek, O. (2021) Feedstock doping using iron rich waste increases the pyrolysis gas yield and adsorption performance of magnetic biochar for emerging contaminants, Bioresource Technology 321: 124473

Link

Magnetic carbons can significantly lower the costs of wastewater treatment due to easy separation of the adsorbent. However, current production techniques often involve the use of chlorinated or sulfonated Fe precursors with an inherent potential for secondary pollution. In this study, ochre, an iron-rich waste stream was investigated as a sustainable Fe source to produce magnetic activated biochar from two agricultural feedstocks, softwood and wheat straw. Fe doping resulted in significant shifts in pyrolysis yield distribution with increased gas yields (+50%) and gas energy content (+40%) lowering the energy costs for production. Physical activation transformed ochre to magnetite/maghemite resulting in activated magnetic biochars and led to a 4-fold increase in the adsorption capacities for two common micropollutants - caffeine and fluconazole. The results show that Fe doping not only benefits the adsorbent properties but also the production process, leading the way to sustainable carbon adsorbents.

Kwapinska, M., Horvat, A., Liu, Y. and Leahy, J.J. (2020) Pilot scale pyrolysis of activated sludge waste from milk processing factory, Waste and Biomass Valorization 11(6): 2887-2903

Link

The majority of the sludge from the treatment of wastewater in milk processing plants is land spread. The drawbacks of land spreading include local oversupply due to high transport costs, which results in sludge being spread on lands in the vicinity of the dairy factories. Local oversupply can lead to accumulation of certain substances in soil through annual application over many years. Therefore, in the long term, there is a need for alternative methods to recover energy and nutrients from increasing volumes of sludge generated from dairy processing. Pyrolysis offers a potential alternative to land spreading, which can reduce health and environmental risks, while providing an avenue for the recovery of energy and nutrients. Pyrolysis allows energy recovery in the form of a high calorific value pyrolysis gas and a char which may be used as a soil amendment. In this study pyrolysis of dried dairy sludge was carried out at pilot scale. The results indicate that a dried biological sludge can be successfully pyrolysed and when mixed with wood the resulting char meets European Biochar Certificate criteria regarding carbon content. Most of the initial energy content of the feedstock was retained in the pyrolysis gas prior to cleaning, 53%, compared to 34.5% in the char and 1.5% in the tar. For the pyrolysis gas after cleaning (mainly cracking in presence of air) the initial energy content of the feedstock retained in the gas was only slightly higher than that retained in the char, 39.2% versus 34.5%, while the tar accounted for 0.8% of the initial energy content.

Rockwood, D.L., Ellis, M.F., Liu, R., Zhao, F., Ji, P., Zhu, Z., Fabbro, K.W., He, Z. and Cave, R.D. (2019) Short rotation eucalypts: opportunities for biochar, Forests 10(4): 314

Link

Eucalypts can be very productive when intensively grown as short rotation woody crops (SRWC) for bioproducts. In Florida, USA, a fertilized, herbicided, and irrigated cultivar planted at 2471 trees/ha could produce over 58 green mt/ha/year in 3.7 years, and at 2071 trees/ha, its net present value (NPV) exceeded $750/ha at a 6% discount rate and stumpage price of $11.02/green mt. The same cultivar grown less intensively at three planting densities had the highest stand basal area at the highest density through 41 months, although individual tree diameter at breast height (DBH) was the smallest. In combination with an organic fertilizer, biochar improved soil properties, tree leaf nutrients, and tree growth within 11 months of application. Biochar produced from Eucalyptus and other species is a useful soil amendment that, especially in combination with an organic fertilizer, could improve soil physical and chemical properties and increase nutrient availability to enhance Eucalyptus tree nutrition and growth on soils. Eucalypts produce numerous naturally occurring bioproducts and are suitable feedstocks for many other biochemically or thermochemically derived bioproducts that could enhance the value of SRWCs.



Publications on Biochar By The Celignis Team

Abdeldayem, O.M., Dupont, C., Ferrasa, D. and Kennedyab, M. (2025) An experimental and numerical investigation of secondary char formation in hydrothermal carbonization: revealing morphological changes via hydrodynamics, RSC Advances 15: 12723-12738

Link

Hydrothermal carbonization (HTC) research has mainly focused on primary char production, with limited attention to secondary char, which is formed through polymerization and condensation of dissolved organic compounds in the liquid phase. This research aims to address this gap via an experimental investigation of the impact of stirring on the mass and carbon balance of HTC reaction products, surface functional groups, and surface morphology of secondary char, using fructose as a model compound. A 3D hydrodynamic simulation model was developed for a two-liter HTC stirred reactor. The experimental results indicated that stirring did not significantly influence the pH, mass, carbon balance, and surface functional groups of secondary char produced under the range of experimental conditions (180 C, 10% biomass to water (B/W) ratio, and a residence time of 0-120 min) studied. Nonetheless, it was observed that a stirring rate of 200 rpm influenced the morphology and shape of the secondary char microspheres, leading to a significant increase in their size i.e., from 1-2 um in unstirred conditions compared with 70 um at a stirring rate of 200 rpm. This increase in size was attributed to the aggregation of microspheres into irregular aggregates at stirring rates > 65 rpm and residence times > 1 h. The hydrodynamic model revealed that high turbulence of Re > 104 and velocities > 0.17 m s-1 correlated with regions of secondary char formation, emphasizing their role in particle aggregation. Particle aggregation is significant above a stirring rate of 65 rpm, which corresponds to the onset of turbulent flow in the reactor. Finally, a mechanism is proposed, based on reactor hydrodynamics under stirred conditions, that explains secondary char deposition on the reactor walls and stirrer.

Kwapinska, M., Sommersacher, P., Kienzl, N., Retschitzegger, S., Lagler, J., Horvat, A. and Leahy, J.J. (2024) Release of N-containing compounds during pyrolysis of milk/dairy processing sludge - Experimental results and comparison of measurement techniques, Journal of Analytical and Applied Pyrolysis 178: 106391

Link

A dried dairy processing sludge (sludge from wastewater treatment of an effluent from a milk processing plant) was pyrolysed in a single-particle reactor at different temperatures from 400 C to 900 C. NH3 and HCN were measured online and offline by means of FTIR as well as by cumulative sampling in impinger bottles (in 0.05 M H2SO4 and 1 M NaOH, respectively) and analysed by photometric method. NO and NO2 were measured online using a nitric oxide analyser while N2O was measured by FTIR. Nitrogen (N) in the sludge and in the remaining char, char-N, was determined. Moreover, tar content in pyrolysis gas was measured and tar-N was determined. The results with respect to N mass balance closure are discussed. The different measurements techniques are compared. For pyrolysis at 520 and 700 nitrogen in the gas phase was mainly contained as N2 (36 % and 40 % respectively), followed by NH3 (15 % and 18 %), tar-N (10 % and 9 %), HCN (1 % and 3 %), NO (1 %) and NO2 (0.2 %). The dairy processing sludge has very specific properties with organic-N present predominantly as proteins and a high content of inherent Ca. These characteristics affected the distribution of N. The amount of char-N was higher while the amount of tar-N lower than for sewage sludge from literature, at comparable pyrolysis temperature.

Kwapinska, M., Pisano, I. and Leahy, J.J. (2023) Hydrothermal carbonization of milk/dairy processing sludge: Fate of plant nutrients, Journal of Environmental Management 345: 118931

Link

Dairy processing sludge (DPS) is a byproduct generated in wastewater treatment plants located in dairy (milk) processing companies (waste activated sludge). DPS presents challenges in terms of its management (as biosolids) due to its high moisture content, prolonged storage required, uncontrolled nutrient loss and accumulation of certain substances in soil in the proximity of dairy companies. This study investigates the potential of hydrothermal carbonization (HTC) for recovery of nutrients in the form of solid hydrochar (biochar) produced from DPS originating from four different dairy processing companies. The HTC tests were carried out at 160 C, 180 C, 200 C and 220 C, and a residence time of 1h. The elemental properties of hydrochars (biochars), the content of primary and secondary nutrients, as well as contaminants were examined. The transformation of phosphorus in DPS during HTC was investigated. The fraction of plant available phosphorus was determined. The properties of hydrochar (biochar) were compared against the European Union Fertilizing Products Regulation. The findings of this study demonstrate that the content of nutrient in hydrochars (biochars) meet the requirements for organo-mineral fertilizer with nitrogen and phosphorus as the declared nutrients (13.9-26.7%). Further research on plant growth and field tests are needed to fully assess the agronomic potential of HTC hydrochar (biochar).

Kwapinska, M., Pisano, I. and Leahy, J.J. (2023) Preliminary assessment of pyrolysis biochar derived from milk/dairy processing sludge as a potential component of fertilizers, ACS Sustainable Chemistry & Engineering 11(6): 2345-2353

Link

Disposal of waste-activated sludge [dairy processing sludge, (DPS)] from wastewater treatment plants located in milk processing companies is an increasing concern. DPS is usually applied to farmlands in the vicinity of the dairy companies. This practice is becoming unsustainable due to uncontrolled nutrient loss and potential soil contamination. We propose to recover nutrients in the form of biochar. This paper examines the properties of biochars obtained from slow pyrolysis of DPS. DPS samples were pyrolyzed at laboratory and pilot scale at 600 and 700 C. The elemental properties of biochars, the content of primary and secondary nutrients, as well as contaminants were examined and compared against the European Union Fertilizing Products Regulation. The biochars meet the specified limits for hydrogen-to-organic carbon ratio, chloride, and polycyclic aromatic hydrocarbons intended for gasification and pyrolysis component category materials. In six out of eight biochars, the content of phosphorus (P) as a single declared nutrient and the level of contaminants meet those required for an organo-mineral fertilizer. Only two biochars meet the required concentrations of nitrogen, phosphorus, and potassium. A minimum solid content of 30% in DPS is required to make the process of biochar production energetically sustainable.

Kwapinska, M., Horvat, A., Agar, D.A. and Leahy, J.J. (2021) Energy recovery through co-pyrolysis of wastewater sludge and forest residues-the transition from laboratory to pilot scale, Journal of Analytical and Applied Pyrolysis 158: 105283

Link

Anaerobically digested sewage sludge mixed with forest residues was pyrolysed at 800 C, at laboratory and pilot scale. The study quantified differences in char and gas yields for tests carried out in a simple fixed bed laboratory reactor and rotating retort pyrolyser at pilot scale, when the residence time of feedstock was 10 min in both cases. The yield of char from pilot scale was 4 % lower than from laboratory scale while the yield of gas was 15.7 % higher. During the pilot scale pyrolysis of anaerobically digested sewage sludge blended with forest residues the gas quality for energy recovery applications was assessed and the fate of impurities (tar, NH3 and H2S) was investigated. The raw pyrolysis gas contained 14.6 g/Nm3 of tar, 36.9 g/Nm3 of NH3 and 793 ppm of H2S. Sixteen N-containing tar species were identified of which pyridine, propenenitrile, 2-methyl-, benzonitrile, and indole are found to be the most abundant. The yield of N-containing tar compounds accounted for approx. 12 % of total tar content. Conditioned pyrolysis gas contained 7.1 g/Nm3 of tar, 0.036 g/Nm3 of NH3 and 119 ppm of H2S. Benzene was by far the most abundant tar compound followed by toluene and styrene. The specifications of the used internal combustion engine were exceeded due to the sum of tar compounds such as fluorantrene and pyrene with 4+ aromatic rings (at 0.0015 g/Nm3) and NH3 content The effectiveness and sustainability of energy recovery in wastewater treatment can be improved using forest industry by-products.

Kozyatnyk, I., Oesterle, P., Wurzer, C., Masek, O. and Jansson (2021) Removal of contaminants of emerging concern from multicomponent systems using carbon dioxide activated biochar from lignocellulosic feedstock, Bioresource Technology 340: 125561

Link

Adsorption of six contaminants of emerging concern (CECs) - caffeine, chloramphenicol, carbamazepine, bisphenol A, diclofenac, and triclosan - from a multicomponent solution was studied using activated biochars obtained from three lignocellulosic feedstocks: wheat straw, softwood, and peach stones. Structural parameters related to the porosity and ash content of activated biochar and the hydrophobic properties of the CECs were found to influence the adsorption efficiency. For straw and softwood biochar, activation resulted in a more developed mesoporosity, whereas activation of peach stone biochar increased only the microporosity. The most hydrophilic CECs studied, caffeine and chloramphenicol, displayed the highest adsorption (22.8 and 11.3 mg g-1) onto activated wheat straw biochar which had the highest ash content of the studied adsorbents (20 wt%). Adsorption of bisphenol A and triclosan, both relatively hydrophobic substances, was highest (31.6 and 30.2 mg g-1) onto activated biochar from softwood, which displayed a well-developed mesoporosity and low ash content.

Wurzer, C. and Masek, O. (2021) Feedstock doping using iron rich waste increases the pyrolysis gas yield and adsorption performance of magnetic biochar for emerging contaminants, Bioresource Technology 321: 124473

Link

Magnetic carbons can significantly lower the costs of wastewater treatment due to easy separation of the adsorbent. However, current production techniques often involve the use of chlorinated or sulfonated Fe precursors with an inherent potential for secondary pollution. In this study, ochre, an iron-rich waste stream was investigated as a sustainable Fe source to produce magnetic activated biochar from two agricultural feedstocks, softwood and wheat straw. Fe doping resulted in significant shifts in pyrolysis yield distribution with increased gas yields (+50%) and gas energy content (+40%) lowering the energy costs for production. Physical activation transformed ochre to magnetite/maghemite resulting in activated magnetic biochars and led to a 4-fold increase in the adsorption capacities for two common micropollutants - caffeine and fluconazole. The results show that Fe doping not only benefits the adsorbent properties but also the production process, leading the way to sustainable carbon adsorbents.

Kwapinska, M., Horvat, A., Liu, Y. and Leahy, J.J. (2020) Pilot scale pyrolysis of activated sludge waste from milk processing factory, Waste and Biomass Valorization 11(6): 2887-2903

Link

The majority of the sludge from the treatment of wastewater in milk processing plants is land spread. The drawbacks of land spreading include local oversupply due to high transport costs, which results in sludge being spread on lands in the vicinity of the dairy factories. Local oversupply can lead to accumulation of certain substances in soil through annual application over many years. Therefore, in the long term, there is a need for alternative methods to recover energy and nutrients from increasing volumes of sludge generated from dairy processing. Pyrolysis offers a potential alternative to land spreading, which can reduce health and environmental risks, while providing an avenue for the recovery of energy and nutrients. Pyrolysis allows energy recovery in the form of a high calorific value pyrolysis gas and a char which may be used as a soil amendment. In this study pyrolysis of dried dairy sludge was carried out at pilot scale. The results indicate that a dried biological sludge can be successfully pyrolysed and when mixed with wood the resulting char meets European Biochar Certificate criteria regarding carbon content. Most of the initial energy content of the feedstock was retained in the pyrolysis gas prior to cleaning, 53%, compared to 34.5% in the char and 1.5% in the tar. For the pyrolysis gas after cleaning (mainly cracking in presence of air) the initial energy content of the feedstock retained in the gas was only slightly higher than that retained in the char, 39.2% versus 34.5%, while the tar accounted for 0.8% of the initial energy content.

Rockwood, D.L., Ellis, M.F., Liu, R., Zhao, F., Ji, P., Zhu, Z., Fabbro, K.W., He, Z. and Cave, R.D. (2019) Short rotation eucalypts: opportunities for biochar, Forests 10(4): 314

Link

Eucalypts can be very productive when intensively grown as short rotation woody crops (SRWC) for bioproducts. In Florida, USA, a fertilized, herbicided, and irrigated cultivar planted at 2471 trees/ha could produce over 58 green mt/ha/year in 3.7 years, and at 2071 trees/ha, its net present value (NPV) exceeded $750/ha at a 6% discount rate and stumpage price of $11.02/green mt. The same cultivar grown less intensively at three planting densities had the highest stand basal area at the highest density through 41 months, although individual tree diameter at breast height (DBH) was the smallest. In combination with an organic fertilizer, biochar improved soil properties, tree leaf nutrients, and tree growth within 11 months of application. Biochar produced from Eucalyptus and other species is a useful soil amendment that, especially in combination with an organic fertilizer, could improve soil physical and chemical properties and increase nutrient availability to enhance Eucalyptus tree nutrition and growth on soils. Eucalypts produce numerous naturally occurring bioproducts and are suitable feedstocks for many other biochemically or thermochemically derived bioproducts that could enhance the value of SRWCs.



...