Background
There are two major pathways by which second generation biofuels biorefineries operate: through hydrolysis processes that aim to liberate sugars from the lignocellulosic polysaccharides (i.e. cellulose and hemicellulose), and through thermochemical processes that degrade more extensively the components of both polysaccharides and lignin. The various technologies available for the hydrolytic or thermochemical processing of biomass, along with their products and possible pre-treatment steps, are illustrated in the accompanying diagram:Total Sugars in Enzyme Hydrolysate, Glucose in Enzyme Hydrolysate, Xylose in Enzyme Hydrolysate, Arabinose in Enzyme Hydrolysate, Mannose in Enzyme Hydrolysate, Galactose in Enzyme Hydrolysate, Rhamnose in Enzyme Hydrolysate, Cellobiose in Enzyme Hydrolysate, Enzymatic Hydrolysis Kinetics, Cellulose Conversion Yield, Xylan Conversion Yield, Combined Sugar Yield, Cellulose Conversion Rate, Xylan Conversion Rate
Total Sugars in Enzyme Hydrolysate, Glucose in Enzyme Hydrolysate, Xylose in Enzyme Hydrolysate, Arabinose in Enzyme Hydrolysate, Mannose in Enzyme Hydrolysate, Galactose in Enzyme Hydrolysate, Rhamnose in Enzyme Hydrolysate, Cellobiose in Enzyme Hydrolysate, Enzymatic Hydrolysis Kinetics, Cellulose Conversion Yield, Xylan Conversion Yield, Combined Sugar Yield, Cellulose Conversion Rate, Xylan Conversion Rate, Increase in Cellulose Accessibility after Pre-Treatment, Percent Increase in Cellulose Conversion Efficiency, Percent Increase in Cellulose Conversion Rate
Total Sugars in Enzyme Hydrolysate, Glucose in Enzyme Hydrolysate, Xylose in Enzyme Hydrolysate, Arabinose in Enzyme Hydrolysate, Mannose in Enzyme Hydrolysate, Galactose in Enzyme Hydrolysate, Rhamnose in Enzyme Hydrolysate, Cellobiose in Enzyme Hydrolysate, Enzymatic Hydrolysis Kinetics, Cellulose Conversion Yield, Cellulose Conversion Rate
Total Sugars in Enzyme Hydrolysate, Glucose in Enzyme Hydrolysate, Xylose in Enzyme Hydrolysate, Arabinose in Enzyme Hydrolysate, Mannose in Enzyme Hydrolysate, Galactose in Enzyme Hydrolysate, Rhamnose in Enzyme Hydrolysate, Cellobiose in Enzyme Hydrolysate, Enzymatic Hydrolysis Kinetics, Xylan Conversion Yield, Xylan Conversion Rate
(1) a bio-oil that is produced from the condensable volatile components.
(2) non-condensable gases and;
(3) biochar, a residual solid component that does not decompose under the conditions employed.
Over time, refinements have allowed process conditions and the feedstock to be manipulated in order to achieve high yields of bio-oil, gases, or biochar,
depending on the particular end product desired.
Bio-Oil
Biochar
Relevant Celignis Analysis Packages for Gasification
Volatile Matter, Fixed Carbon, Moisture, Ash, Carbon, Hydrogen, Nitrogen, Sulphur, Oxygen, Gross Calorific Value, Net Calorific Value, Chlorine, Ash Shrinkage Starting Temperature (Reducing), Ash Deformation Temperature (Reducing), Ash Hemisphere Temperature (Reducing), Ash Flow Temperature (Reducing), Aluminium, Calcium, Iron, Magnesium, Phosphorus, Potassium, Silicon, Sodium, Titanium
Six conceptual process scenarios for the production of biobutanol from lignocellulosic biomass through acetone?butanol?ethanol (ABE) fermentation, using reported data on process performances, were developed with ASPEN Plus® V8.2 software. The six scenarios covered three fermentation strategies, i.e. batch separate hydrolysis and fermentation (SHF), continuous SHF, and batch simultaneous saccharification and fermentation (SSF) integrated with gas stripping (GS). The two downstream processing options considered were double?effect distillation (DD) and liquid?liquid extraction and distillation (LLE&D). It was found that the SSF?GS/DD scenario was the most energy efficient with a liquid fuel efficiency of 24% and an overall efficiency of 31%. This was also the scenario with the best economic outcome, with an internal rate of return (IRR) of 15% and net present value (NPV) of US$387 million. The SSF?GS/DD scenario was compared to a similar molasses process, based on the product flow rates, and it was found that the molasses process was more energy efficient with a gross energy value (GEV) of 23?MJ?kg1 butanol compared to ?117?MJ?kg1 butanol for the lignocellulosic process. In addition, the molasses?based process was more profitable with an IRR of 36% compared to 21%. However, the energy requirements for the molasses process were supplied from fossil fuels, whereas for the lignocellulose processes a portion of the feedstock was diverted to provide process energy. Improved environmental performance is therefore associated with the lignocellulosic process. |
Biobutanol has gained attention as an alternative renewable transportation fuel for its superior fuel properties and widespread applications in chemical industry, primarily as a solvent. Conventional butanol fermentation has drawbacks that include strain degeneration, end-product toxicity, by-product formation, low butanol concentrations and high substrate cost. The complexity of Clostridium physiology and close control between sporulation phase and ABE fermentation has made it demanding to develop industrially potent strains. In addition to the isolation and engineering of superior butanol producing bacteria, the development of advanced cost-effective technologies for butanol production from feedstock like lignocellulosic biomass has become the primary research focus. High process costs associated with complex feedstocks, product toxicity and low product concentrations are few of the several bioprocess challenges involved in biobutanol production. The article aims to assess the challenges in lignocellulosic biomass to biobutanol conversion and identify key process improvements that can make biobutanol commercially viable. |
The paper and pulp industry is one of the major industries that generate large amount of solid waste with high moisture content. Numerous opportunities exist for valorisation of waste paper sludge, although this review focuses on primary sludge with high cellulose content. The most mature options for paper sludge valorisation are fermentation, anaerobic digestion and pyrolysis. In this review, biochemical and thermal processes are considered individually and also as integrated biorefinery. The objective of integrated biorefinery is to reduce or avoid paper sludge disposal by landfilling, water reclamation and value addition. Assessment of selected processes for biorefinery varies from a detailed analysis of a single process to high level optimisation and integration of the processes, which allow the initial assessment and comparison of technologies. This data can be used to provide key stakeholders with a roadmap of technologies that can generate economic benefits, and reduce carbon wastage and pollution load. |
Paper sludge (PS) from the paper and pulp industry consists primarily of cellulose and ash and has significant potential for ethanol production. Thirty-seven PS samples from 11 South African paper and pulp mills exhibited large variation in chemical composition and resulting ethanol production. Simultaneous saccharification and fermentation (SSF) of PS in fed-batch culture was investigated at high solid loadings and low enzyme dosages. Water holding capacity and viscosity of the PS influenced ethanol production at elevated solid loadings of PS. High viscosity of PS from virgin pulp mills restricted the solid loading to 18% (w/w) at an enzyme dosage of 20 FPU/gram dry PS (gdPS), whereas an optimal solid loading of 27% (w/w) was achieved with corrugated recycle mill PS at 11 FPU/gdPS. Ethanol concentration and yield of virgin pulp and corrugated recycle PS were 34.2 g/L at 66.9% and 45.5 g/L at 78.2%, respectively. |
Paper sludge samples collected from recycling mills exhibited high ash content in the range of 54.59%–65.50% and glucose concentrations between 21.97% and 31.11%. Washing the sludge reduced the total ash content to between 10.7% and 19.31% and increased the concentration of glucose, xylose and lignin. Samples were screened for ethanol production and fed-batch simultaneous saccharification and fermentation (SSF) was optimised for the washed samples that resulted in highest and lowest ethanol concentrations. Maximum ethanol concentrations of 57.31 g/L and 47.72 g/L (94.07% and 85.34% of the maximum theoretical yield, respectively) was predicted for high and low fermentative potential samples, respectively, and was experimentally achieved with 1% deviation. A generic set of process conditions were established for the conversion of high ash-containing paper sludge to ethanol. Techno-economic analysis based on three different revenue scenarios, together with Monte Carlo analysis revealed 95% probability of achieving IRR values in excess of 25% at a paper sludge feed rate of 15 t/d. Feed rates of 30 t/d and 50 t/d exhibited a cumulative probability of 100%. This study presents the technical feasibility and economic viability of paper mills expansion towards bioethanol production from paper sludge. |
Next-generation biofuels from renewable sources have gained interest among research investigators, industrialists, and governments due to major concerns on the volatility of oil prices, climate change, and depletion of oil reserves. Biobutanol has drawn signicant attention as an alternative transportation fuel due to its superior fuel properties over ethanol. e advantages of butanol are its high energy content, better blending with gasoline, less hydroscopic nature, lower volatility, direct use in convention engines, low corrosiveness, etc. Butanol production through (acetone, butanol, and ethanol) ABE fermentation is a well-established process, but it has several drawbacks like feedstock cost, strain degeneration, product toxicity, and low product concentrations. Lignocellulosic biomass is considered as the most abundant, renewable, low-cost feedstock for biofuels. Production of butanol from lignocellulosic biomass is more complicated due to the recalcitrance of feedstock and inhibitors generated during the pretreatment and hydrolysis process. Advanced fermentation and product recovery techniques are being researched to make biobutanol industrially viable. |
BACKGROUND A thermophilic lipase?producing Geobacillus thermodenitrificans strain AV?5 was isolated from the Mushroom Spring of Yellowstone National Park in WY, USA and studied as a source of lipase for transesterification of vegetable oils to biodiesel. RESULTS A maximum activity of 330 U mL?1 was produced on 2% (v/v) waste cooking oil at 50 °C, pH 8, aeration rate of 1 vvm and agitation speed of 400 rpm. However, the higher lipase productivity (14.04 U mL?1 h?1) was found at a volumetric oxygen transfer coefficient (kLa) value of 18.48 h?1. The partially purified lipase had a molecular weight, temperature and pH optimum of 50 kDa, 65 °C and pH 9, respectively, and was thermo?alkali stable: at 70 °C, it retained 81% activity and 45% stability; at pH 10 it lost only 15% and 2.6% of its maximum activity and stability, respectively. Enzyme kinetic studies with p?nitrophenyl laurate as substrate revealed high substrate specificity (km of 0.440 mmol L?1) and kinetic activity (vmax of 556 nmol mL min?1) of lipase. CONCLUSIONS The kLa was found to be highly dependent on aeration and agitation rates. Following optimization of fermentation medium and parameters, a 7.5?fold increase in lipase production by G. thermodenitrificans was attained. The lipase activity and substrate specificity (as km) are among the highest reported in the literature for bacterial lipases. It was demonstrated that the enzyme can produce biodiesel from waste cooking oil with a conversion yields of 76%. © 2015 Society of Chemical Industry |
Clostridium sporogenes BE01, a non-acetone forming butanol producer, can produce hydrogen and volatile fatty acids (VFAs) during butanol fermentation from rice straw hydrolysate. Bio-electrochemical analysis revealed the changes that occurred in the redox microenvironment and electron transport mediators during fermentation at different pH and CaCO3 concentrations. CaCO3 played a very important role in enhancing the production of hydrogen, volatile fatty acids and solvents by stimulating the changes in the electron transport system. The electron transport system mediated by NAD/NADH, flavins, Fe–S clusters, protein bound FAD, and cytochrome complex in C. sporogenes BE01 was analysed by cyclic voltammetry (CV). Electrokinetic analysis revealed that the favorability for redox reactions increased with an increase in pH, and the polarization resistance reduced significantly with CaCO3 supplementation. |
The chemical-catalyzed transesterification of vegetable oils to biodiesel has been industrially adopted due to its high conversion rates and low production time. However, this process suffers from several inherent drawbacks related to energy-intensive and environmentally unfriendly processing steps such as catalyst and product recovery, and waste water treatment. This has led to the development of the immobilized enzyme catalyzed process for biodiesel production which is characterized by certain environmental and economical advantages over the conventional chemical method. These include room-temperature reaction conditions, elimination of treatment costs associated with recovery of chemical catalysts, enzyme re-use, high substrate specificity, the ability to convert both free fatty acids and triglycerides to biodiesel in one step, lower alcohol to oil ratio, avoidance of side reactions and minimized impurities, easier product separation and recovery; biodegradability and environmental acceptance. This paper provides a comprehensive review of the current state of advancements in the enzymatic transesterification of oils. A thorough analysis of recent biotechnological progress is presented in the context of present technological challenges and future developmental opportunities aimed at bringing the enzyme costs down and improving the overall process economics towards large scale production of enzymatic biodiesel. As the major obstacles that impede industrial production of enzymatic biodiesel is the enzyme cost and conversion efficiency, this topic is addressed in greater detail in the review. A better understanding and control of the underpinning mechanisms of the enzymatic biodiesel process would lead to improved process efficiency and economics. The yield and conversion efficiency of enzymatic catalysis is influenced by a number of factors such as the nature and properties of the enzyme catalyst, enzyme and whole cell immobilization techniques, enzyme pretreatment, biodiesel substrates, acyl acceptors and their step-wise addition, use of solvents, operating conditions of enzymatic catalysis, bioreactor design. The ability of lipase to catalyze the synthesis of alkyl esters from low-cost feedstock with high free fatty acid content such as waste cooking oil, grease and tallow would lower the cost of enzymatic biodiesel. Discovery and engineering of new and robust lipases with high activity, thermostability and resistance to inhibition are needed for the establishment of a cost-effective enzymatic process. Opportunities to create a sustainable and eco-friendly pathway for production of enzymatic biodiesel from renewable resources are discussed. |
Bioethanol and biobutanol hold great promise as alternative biofuels, especially for transport sector, because they can be produced from lignocellulosic agro-industrial residues. From techno-economic point of view, the bioprocess for biofuels production should involve minimal processing steps. Consolidated bioprocessing (CBP), which combines various processing steps such as pretreatment, hydrolysis and fermentation in a single bioreactor, could be of great relevance for the production of bioethanol and biobutanol or solvents (acetone, butanol, ethanol), employing clostridia. For CBP, Clostridium holds best promise because it possesses multi-enzyme system involving cellulosome and xylanosome, which comprise several enzymes such as cellulases and xylanases. The aim of this article was to review the recent developments on enzyme systems of clostridia, especially xylanase and cellulase with an effort to analyse the information available on molecular approaches for the improvement of strains with ultimate aim to improve the efficiencies of hydrolysis and fermentation. |
Growth inhibition kinetics of a novel non-acetone forming butanol producer, Clostridium sporogenes BE01, was studied under varying concentrations of acetic and formic acids in rice straw hydrolysate medium. Both the organic acids were considered as inhibitors as they could inhibit the growth of the bacterium, and the inhibition constants were determined to be 1.6 and 0.76 g/L, respectively, for acetic acid and formic acid. Amberlite resins—XAD 4, XAD 7, XAD 16, and an anion exchange resin—Seralite 400 were tested for the efficient removal of these acidic inhibitors along with minimal adsorption of sugars and essential minerals present in the hydrolysate. Seralite 400 was an efficient adsorbent of acids, with minimal affinity towards minerals and sugars. Butanol production was evaluated to emphasize the effect of minerals loss and acids removal by the resins during detoxification. |
The DIBANET process chain, as a result of its patented pre-treatment stage, has significantly increased the yields of levulinic acid, formic acid, and furfural beyond what was considered to be the state of the art. By fractionating lignocellulosic biomass into its three main polymers (cellulose, hemicellulose, lignin) it has also allowed for lignin to be recovered and sold as a higher-value product. These developments have meant that the amount of acid hydrolysis residues (AHRs) that have been produced are significantly (up to 88%) less than in the Biofine process. These AHRs are required to provide process heat for DIBANET. Direct combustion is the most efficient means for doing this. If such combustion does not occur and the AHRs are instead used in other processes, e.g. pyrolysis and gasification, then more biomass will need to be purchased to fuel the core DIBANET process. The AHRs have not been proven to be superior to virgin biomass when put through these thermochemical processes. Indeed, many of the results from DIBANET Work Package 4 indicate the opposite. Hence, given that DIBANET, and the modelling of its optimal configuration, is designed on the basis of an integrated process, centred on the core element of the acid hydrolysis of biomass, then combustion is the only viable end use for the AHRs.
|
Biobutanol from lignocellulosic biomass has gained much attention due to several advantages over bioethanol. Though microbial production of butanol through ABE fermentation is an established technology, the use of lignocellulosic biomass as feedstock presents several challenges. In the present study, biobutanol production from enzymatic hydrolysate of acid pretreated rice straw was evaluated using Clostridium sporogenes BE01. This strain gave a butanol yield of 3.43 g/l and a total solvent yield of 5.32 g/l in rice straw hydrolysate supplemented with calcium carbonate and yeast extract. Hydrolysate was analyzed for the level of inhibitors such as acetic acid, formic acid and furfurals which affect the growth of the organism and in turn ABE fermentation. Methods for preconditioning the hydrolysate to remove toxic end products were done so as to improve the fermentation efficiency. Conditions of ABE fermentation were fine tuned resulting in an enhanced biobutanol reaching 5.52 g/l. |
Biobutanol from lignocellulosic biomass has gained much attention due to several advantages over bioethanol. Though microbial production of butanol through ABE fermentation is an established technology, the use of lignocellulosic biomass as feedstock presents several challenges. In the present study, biobutanol production from enzymatic hydrolysate of acid pretreated rice straw was evaluated using Clostridium sporogenes BE01. This strain gave a butanol yield of 3.43 g/l and a total solvent yield of 5.32 g/l in rice straw hydrolysate supplemented with calcium carbonate and yeast extract. Hydrolysate was analyzed for the level of inhibitors such as acetic acid, formic acid and furfurals which affect the growth of the organism and in turn ABE fermentation. Methods for preconditioning the hydrolysate to remove toxic end products were done so as to improve the fermentation efficiency. Conditions of ABE fermentation were fine tuned resulting in an enhanced biobutanol reaching 5.52 g/l. |
Response surface methodology (RSM) was used to optimize the enzymatic hydrolysis of corn stover (CS), an abundant agricultural residue in the USA. A five-level, three-variable central composite design (CCD) was employed in a total of 20 experiments to model and evaluate the impact of pH (4.1–6.0), solids loadings (6.6–23.4%), and enzyme loadings (6.6?23.4 FPU g?1 DM) on glucose yield from thermo-mechanically extruded CS. The extruded CS was first hydrolyzed with the crude cellulase of Penicillium pinophilum ATCC 200401 and then fermented to ethanol with Saccharomyces cerevisiae ATCC 24860. Although all three variables had a significant impact, the enzyme loadings proved the most significant parameter for maximizing the glucose yield. A partial cubic equation could accurately model the response surface of enzymatic hydrolysis as the analysis of variance (ANOVA) showed a coefficient of determination (R2 ) of 0.82. At the optimal conditions of pH of 4.5, solids loadings of 10% and enzyme loadings of 20 FPU g?1 DM, the enzymatic hydrolysis of pretreated CS produced a glucose yield of 57.6% of the glucose maximum yield which was an increase of 10.4% over the non-optimized controls at zero-level central points. The predicted results based on the RSM regression model were in good agreement with the actual experimental values. The model can present a rapid means for estimating lignocellulose conversion yields within the selected ranges. |
Prairie cordgrass (PCG), Spartina pectinata, is considered an energy crop with potential for bioethanol production in North America. The focus of this study was to optimize enzymatic hydrolysis of PCG at higher solids loadings using a thermostable cellulase of a mutant Penicillium pinophilum ATCC 200401. A three variable, five-level central composite design of response surface methodology (RSM) was employed in a total of 20 experiments to model and evaluate the impact of pH (4.1–6.0), solids loadings (6.6%–23.4%), and enzyme loadings (6.6–23.4 FPU/g dry matter, DM) on glucose yield from a thermo-mechanically extruded PCG. The extruded PCG was first hydrolyzed with the crude P. pinophilum cellulase and then fermented to ethanol with Saccharomyces cerevisiae ATCC 24860. Although all three variables had a significant impact, the enzyme loadings proved the most significant parameter for maximizing the glucose yield. A partial cubic equation could accurately model the response surface of enzymatic hydrolysis as the analysis of variance showed a coefficient of determination (R2) of 0.89. At the optimal conditions of pH of 4.5, solids loadings of 10% and enzyme loadings of 20 FPU/g DM, the enzymatic hydrolysis of pretreated PCG produced a glucose yield of 76.1% from the maximum yield which represents an increase of 15% over the non-optimized controls at the zero-level central points. The predicted results based on the RSM regression model were in good agreement with the actual experimental values. The model can present a rapid means for estimating lignocellulose conversion yields within the selected ranges. Furthermore, statistical optimization of solids and enzyme loadings of enzymatic hydrolysis of biomass may have important implications for reduced capital and operating costs of ethanol production. |
India is the fifth largest primary energy consumer and fourth largest petroleum consumer after USA, China, and Japan. Despite the global economic crisis, India’s economy is expected to grow at 6 to 8 %/year. There is an extreme dependence on petroleum products with considerable risks and environmental issues. Petroleum-derived transport fuels are of limited availability and contribute to global warming, making renewable biofuel as the best alternative. The focus on biogas and biomass-based energy, such as bioethanol and biohydrogen, will enhance cost-effectiveness and provide an opportunity for the rural community. Among all energy sources, microalgae have received, so far, more attention due to their facile adaptability to grow in the photobioreactors or open ponds, high yields, and multiple applications. Microalgae can produce a substantial amount of triacylglycerols as a storage lipid under photooxidative stress or other adverse environmental conditions. In addition to renewable biofuels, they can provide different types of high-value bioproducts added to their advantages, such as higher photosynthetic efficiency, higher biomass production, and faster growth compared to any other energy crops. The viability of first-generation biofuels production is, however, questionable because of the conflict with food supply. In the future, biofuels should ideally create the environmental, economic, and social benefits to the communities and reflect energy efficiency so as to plan a road map for the industry to produce third-generation biofuels. |
A recently discovered thermophilic isolate, Geobacillus sp. R7, was shown to produce a thermostable cellulase with a high hydrolytic potential when grown on extrusion-pretreated agricultural residues such corn stover and prairie cord grass. At 70°C and 15–20% solids, the thermostable cellulase was able to partially liquefy solid biomass only after 36 h of hydrolysis time. The hydrolytic capabilities of Geobacillus sp. R7 cellulase were comparable to those of a commercial cellulase. Fermentation of the enzymatic hydrolyzates with Saccharomyces cerevisiae ATCC 24860 produced ethanol yields of 0.45–0.50 g ethanol/g glucose with more than 99% glucose utilization. It was further demonstrated that Geobacillus sp. R7 can ferment the lignocellulosic substrates to ethanol in a single step that could facilitate the development of a consolidated bioprocessing as an alternative approach for bioethanol production with outstanding potential for cost reductions. |
Switchgrass (Panicum virgatum), a perennial grass native to North America, is a promising energy crop for bioethanol production. The aim of this study was to optimize the enzymatic saccharification of thermo-mechanically pretreated switchgrass using a thermostable cellulase from Geobacillus sp. in a three-level, four-variable central composite design of response surface methodology. Different combinations of solids loadings (5 to 20%), enzyme loadings (5 to 20 FPU g-1 DM), temperature (50 to 70 oC), and time (36 to 96 h) were investigated in a total of 30 experiments to model glucose release from switchgrass. All four factors had a significant impact on the cellulose conversion yields with a high coefficient of determination of 0.96. The use of higher solids loadings (20%) and temperatures (70 oC) during enzymatic hydrolysis proved beneficial for the significant reduction of hydrolysis times (2.67-times) and enzyme loadings (4-times), with important implications for reduced capital and operating costs of ethanol production. At 20% solids, the increase of temperature of enzymatic hydrolysis from 50 oC to 70 oC increased glucose concentrations by 34%. The attained maximum glucose concentration of 23.52 g L-1 translates into a glucose recovery efficiency of 46% from the theoretical yield. Following red yeast fermentation, a maximum ethanol concentration of 11 g L-1 was obtained, accounting for a high glucose to ethanol fermentation efficiency of 92%. The overall conversion efficiency of switchgrass to ethanol was 42%. |
A thermophilic microbial consortium (TMC) producing hydrolytic (cellulolytic and xylanolytic) enzymes was isolated from yard waste compost following enrichment with carboxymethyl cellulose and birchwood xylan. When grown on 5% lignocellulosic substrates (corn stover and prairie cord grass) at 600 C, the thermophilic consortium produced more xylanase (up to 489 U/l on corn stover) than cellulase activity (up to 367 U/l on prairie cord grass). Except for the carboxymethyl cellulose-enriched consortium, thermo-mechanical extrusion pretreatment of these substrates had a positive effect on both activities with up to 13% and 21% increase in the xylanase and cellulase production, respectively. The optimum temperatures of the crude cellulase and xylanase were 600 C and 700 C with half-lives of 15 h and 18 h, respectively, suggesting higher thermostability for the TMC xylanase. Sodium dodecyl sulfatepolyacrylamide gel electrophoresis of the crude enzyme exhibited protein bands of 25-77 kDa with multiple enzyme activities containing 3 cellulases and 3 xylanases. The substrate specificity declined in the following descending order: avicel>birchwood xylan>microcrystalline cellulose>filter paper>pine wood saw dust>carboxymethyl cellulose. The crude enzyme was 77% more active on insoluble than soluble cellulose. The Km and Vmax values were 36.49 mg/ml and 2.98 U/mg protein on avicel (cellulase), and 22.25 mg/ml and 2.09 U/mg protein, on birchwood xylan (xylanase). A total of 50 TMC isolates were screened for cellulase and xylanase secretion on agar plates. All single isolates showed significantly lower enzyme activities when compared to the thermophilic consortia. This is indicative of the strong synergistic interactions that exist within the thermophilic microbial consortium and enhance its hydrolytic capabilities. It was further demonstrated that the thermostable enzyme-generated lignocellulosic hydrolyzates can be fermented to bioethanol by a recombinant strain of Escherichia coli. This could have important implications in the enzymatic breakdown of lignocellulosic biomass for the establishment of a robust and cost-efficient process for production of cellulosic ethanol. To the best of our knowledge, this work represents the first report in literature on biochemical characterization of lignocellulose-degrading enzymes from a thermophilic microbial consortium. |
Aspergillus niger NII-08121/MTCC 7956 exhibited differences in expression of ?-glucosidase (BGL) in response to carbon sources provided in the medium. Activity staining with methyl umbelliferyl ?-d-glucopyranoside (MUG) indicated that four different isoforms of BGL were expressed when A. niger was grown under submerged fermentation with either lactose or cellulose, whereas only two were expressed when wheat bran or rice straw was used as the carbon source. Among the four isoforms of BGL expressed during lactose supplementation, two were found to retain 92% and 82% activity respectively in presence of 250 mM glucose in the MUG assay. The major ?-glucosidase (BGL1) was purified to homogeneity by electro elution from a Native PAGE gel. The purified 120 kDa protein was active at 50 °C and was stable for 48 h without any loss of activity. The optimum pH and temperature were 4.8 and 70 °C respectively. |
ABE (Acetone-Butanol-Ethanol) fermentations were next only to ethanol fermentations and used to be a major industry until 1960s. Later, biological route for butanol production lost its importance owing to competition from petrochemical route, and today there is a renewed interest in ABE fermentation due to increased concerns over petroleum depletion and the increased pollution due to burning of petroleum fuels. Though the ABE fermentation process used to be operational decades back, the same technologies are not applicable today due to the lack of cost effectiveness and the nonavailability of conventional raw materials. The most feasible feedstock for butanol seems to be lignocellulose, but the problems plaguing bioethanol are also applicable for biobutanol. However, the future for biobutanol seemsbright since the Clostridia that produce ABE are capable of utilizing a range of carbon sources for growth and solvent production and also are not inhibited by the sugar degradation products generated during biomass pretreatment are being developed. Meanwhile, in the short term, advanced fermentation technologies are being developed by the expert groups which tackle problems such as low cell density, viability, and solvent sensitivity by modulations in the methods of carbon feeding, mode of culture, and in situ removal and recovery of solvents. These efforts may be developed into commercially viable technologies. |
Rice straw is an attractive lignocellulosic material for bioethanol production since it is one of the most abundant renewable resources. It has several characteristics, such as high cellulose and hemicelluloses content that can be readily hydrolyzed into fermentable sugars. But there occur several challenges and limitations in the process of converting rice straw to ethanol. The presence of high ash and silica content in rice straw makes it an inferior feedstock for ethanol production. One of the major challenges in developing technology for bioethanol production from rice straw is selection of an appropriate pretreatment technique. The choice of pretreatment methods plays an important role to increase the efficiency of enzymatic saccharification thereby making the whole process economically viable. The present review discusses the available technologies for bioethanol production using rice straw. |
Biomass feedstock having less competition with food crops are desirable for bio-ethanol production and such resources may not be localized geographically. A distributed production strategy is therefore more suitable for feedstock like water hyacinth with a decentralized availability. In this study, we have demonstrated the suitability of this feedstock for production of fermentable sugars using cellulases produced on site. Testing of acid and alkali pretreatment methods indicated that alkali pretreatment was more efficient in making the sample susceptible to enzyme hydrolysis. Cellulase and ?-glucosidase loading and the effect of surfactants were studied and optimized to improve saccharification. Redesigning of enzyme blends resulted in an improvement of saccharification from 57% to 71%. A crude trial on fermentation of the enzymatic hydrolysate using the common baker’s yeast Saccharomyces cerevisiae yielded an ethanol concentration of 4.4 g/L. |