Research project at Celignis


"The Production of Sustainable Diesel-Miscible-Biofuels from the Residues and Wastes of Europe and Latin America"

ProgrammeHorizon Europe, FP7.ENERGY.2008.3.2.1
CategoryResearch and Innovation Action (RIA)
Period2009 - 2013
LinksWebsite, Cordis
Celignis founder Dan Hayes wrote and managed a project, DIBANET, funded by the European Union's FP7 Energy programme. It involved collaborative research between 13 partners from Europe and Latin America to develop biorefining technologies.

The particular focus of the project was on the production of levulinic acid (a valuable platform chemical), from cellulose and hexose sugars, and of furfural from hemicellulose-dervied pentose sugars such as xylose. The process employed acid-hydrolysis, at elevated temperatures and pressures, to hydrolyse the polsyaccharides and produce the targeted molecules. The project also involved the development of a novel pre-treatment process, employing formic acid and hydrogen peroxide. The solid residues that were retained after hydrolysis were pyrolysed and gasified in order to produce energy.

Dan's primary scientific role in the project was in WP2 where he led efforts to generate algorithms for the prediction of biomass composition based on the near infrared spectra of samples, which can be collected in a matter of seconds versus the days/weeks required for chemical analysis methods. Particular focuses for model development in DIBANET were the feedstocks Miscanthus (highly suitable for European climates) and sugarcane bagasse (a highly abundant fibrous residue resulting from the extraction of sucrose from sugar cane, grown in large quantities in Brazil and other Latin American countries).

The development of the rapid biomass analysis models in DIBANET resulted in Dan spinning-out Celignis in 2014.


Hayes, D. J. M. (2013) Mass and Compositional Changes, Relevant to Biorefining, in Miscanthus x giganteus Plants over the Harvest Window, Bioresource Technology 142: 591-602


Miscanthus plants were sampled from several plantations in Ireland over the harvest window (October-April). These were separated into their anatomical components and the loss of leaves monitored. Three distinct phases were apparent: there was minimal loss in the "Early" (October to early December) and "Late" (March and April) phases, and rapid leaf loss in the interim period. Samples were analysed for constituents relevant to biorefining. Changes in whole-plant composition included increases in glucose and Klason lignin contents and decreases in ash and arabinose contents. These changes arose mostly from the loss of leaves, but there were some changes over time within the harvestable plant components. Although leaves yield less biofuel than stems, the added biomass provided by an early harvest (31.9-38.4%) meant that per hectare biofuel yields were significantly greater (up to 29.3%) than in a late harvest. These yields greatly exceed those from first generation feedstocks.

Hayes, D. J. M. (2013) Second-generation biofuels: why they are taking so long, Wiley Interdisciplinary Reviews: Energy and Environment 2(3): 304-334


There has been a significant degree of hype regarding the commercial potential of second-generation biofuels (2GBs; biofuels sourced from lignocellulosic materials). In 2007, ambitious targets for the mass substitution of fossil-fuel-derived transport fuels by 2GBs were put forward in the United States and similar targets exist for other countries. However, as of May 2012, no commercial-scale 2GB facilities are currently operating. The technical and financial obstacles that have delayed the deployment of these facilities are discussed, as are recent advancements in research that may help to overcome some of these. There are six commercial-scale facilities currently (May, 2012) in construction and many more are planned in the near term. The prospects for 2GBs are more promising now than in the past but the delays in getting to this point mean that the ambitious targets of several years ago are unlikely to be reached in the near term.

Hayes, D.J.M. (2013) Biomass composition and its relevance to biorefining, The Role of Catalysis for the Sustainable Production of Biofuels and Bio-chemicals, K. Triantafyllidis, A. Lappas, M. Stoker, Elsevier B. V.27-65

Biomass feedstocks for the production of biofuels and chemicals vary greatly in their chemical compositions. These differences affect which technologies are used for processing. First generation technologies focus on the conversion of sugars, starches, and oils whilst second generation technologies process lignocellulose. While the conversion in first generation processes is relatively facile, the processing of lignocellulose is hindered by the complexity of the biomass matrix. Lignocellulosic feedstocks, however, tend to be significantly less costly, in economic, environmental, and energy terms, to produce. The effects of the various constituents on the conversion of biomass by either hydrolytic or thermochemical means are discussed, as are the logistical considerations needed when sourcing feedstocks. Biomass can be classified as a specifically grown energy crop, an agricultural residue, or a waste resource. Several examples of lignocellulosic feedstocks are discussed for each of these types and representative chemical data for a variety of materials presented.

Hayes, D. J. M. (2013) Report on Optimal Use of DIBANET Feedstocks and Technologies, DIBANET WP5 Report84 pages


The DIBANET process chain, as a result of its patented pre-treatment stage, has significantly increased the yields of levulinic acid, formic acid, and furfural beyond what was considered to be the state of the art. By fractionating lignocellulosic biomass into its three main polymers (cellulose, hemicellulose, lignin) it has also allowed for lignin to be recovered and sold as a higher-value product. These developments have meant that the amount of acid hydrolysis residues (AHRs) that have been produced are significantly (up to 88%) less than in the Biofine process. These AHRs are required to provide process heat for DIBANET. Direct combustion is the most efficient means for doing this. If such combustion does not occur and the AHRs are instead used in other processes, e.g. pyrolysis and gasification, then more biomass will need to be purchased to fuel the core DIBANET process. The AHRs have not been proven to be superior to virgin biomass when put through these thermochemical processes. Indeed, many of the results from DIBANET Work Package 4 indicate the opposite. Hence, given that DIBANET, and the modelling of its optimal configuration, is designed on the basis of an integrated process, centred on the core element of the acid hydrolysis of biomass, then combustion is the only viable end use for the AHRs. Given that realisation, the focus of this modelling Deliverable is on what the optimal configuration of the process chain would be regarding the three core stages (pretreatment, hydrolysis, and the esterification of levulinic acid with ethanol). It has been demonstrated that a scenario incorporating only the first stage can be profitable in its own right and allow for commercial development at much lower capital costs. In this instance bagasse is a much more attractive feedstock, compared with Miscanthus, due to its higher pentose content.

Integrating the second stage increases capital costs but improves the net present value. The esterification step is somewhat capital intensive but an integrated DIBANET biorefinery that incorporates all three stages can still be highly profitable providing the furfural is sold at its current market price and the lignin is sold rather than used as a fuel for process needs. Indeed, the DIBANET process should not be considered only in the context of biofuels but as a true biorefinery that produces lower value fuels (e.g. ethyl-levulinate) in addition to high value chemicals and bio-products (e.g. furfural and lignin).

The energy and carbon balances of the various DIBANET scenarios have been investigated and are highly positive with values significantly superior to those for the energy-intensive Biofine process. A socioeconomic survey has also been carried out and has shown that there can be a positive effect on employment, both direct and indirect, particularly when Miscanthus is used as the feedstock. The DIBANET integrated process also holds up well when its environmental and social performances are ranked for a range of important parameters.

The development of the core DIBANET IP towards commercial deployment appears to be warranted, based on data provided from the models developed. Indeed, these models present possible scenarios whereby even demonstration-scale DIBANET facilities could operate at significant profits and provide healthy returns on the capital invested.

Hayes, D. J. M. (2012) Development of near infrared spectroscopy models for the quantitative prediction of the lignocellulosic components of wet Miscanthus samples, Bioresource Technology 119: 393-405


Miscanthus samples were scanned over the visible and near infrared wavelengths at several stages of processing (wet-chopped, air-dried, dried and ground, and dried and sieved). Models were developed to predict lignocellulosic and elemental constituents based on these spectra. The dry and sieved scans gave the most accurate models; however the wet-chopped models for glucose, xylose, and Klason lignin provided excellent accuracies with root mean square error of predictions of 1.27%, 0.54%, and 0.93%, respectively. These models can be suitable for most applications. The wet models for arabinose, Klason lignin, acid soluble lignin, ash, extractives, rhamnose, acid insoluble residue, and nitrogen tended to have lower R(2) values (0.80+) for the validation sets and the wet models for galactose, mannose, and acid insoluble ash were less accurate, only having value for rough sample screening. This research shows the potential for online analysis at biorefineries for the major lignocellulosic constituents of interest.

Hayes, D. J. M. (2012) Review of Biomass Feedstocks and Guidelines of Best Practice, DIBANET WP2 Report150 pages

Full Version

Shorter Version

This document is the result of the evaluation of biomass feedstocks, from Europe and Latin America, that took place as part of the DIBANET project. That project is co-financed from the 7 th Framework Programme for Research and Technological Demonstration of the European Union. (Title: Enhancing international cooperation between the EU and Latin America in the field of biofuels; Grant Agreement No: 227248-2).

The work in Task 2.1 of Work Package 2 (WP2) at DIBANET partners UL, CTC, and UNICAMP involved evaluating, on a number of levels, potential feedstocks for utilisation in the DIBANET acid-hydrolysis process (WP3). In the early stage of the project a wide number of feedstocks were examined and relevant secondary compositional data were sought from the literature. Selected feedstocks were analysed at the laboratories of UL, CTC, and UNICAMP and, from these, a limited number of feedstocks were subjected to more in-depth analysis/evaluation.

Work at UL focused on Miscanthus, cereal straws, and waste papers. The wet-chemical and spectroscopic analysis that was carried out on a wide number of Miscanthus samples have allowed for in-depth understandings to be reached regarding the changes in lignocellulosic composition, and potential biomass/biofuel yields that could be realised over the harvest window. Straws present much less chemical variation but have enough structural carbohydrates to warrant their processing in the DIBANET technology. Waste papers can have amongst the highest total carbohydrate contents of any of the feedstocks studied.

Work at CTC focused on the residues of the sugarcane industry - sugarcane bagasse and sugarcane trash (field residues from harvesting). A large number of samples were collected from a variety of sugar mills and plantations. It has been seen that there can be a significant variation in the composition of different bagasse samples, particularly with regards to the ash content. Sugarcane trash has lower total carbohydrates contents than bagasse but is still a suitable feedstock for DIBANET.

Work at UNICAMP focused on the evaluation of residues from the banana, coffee, and coconut industries. It was found that these also have potential for utilisation in the DIBANET process, however the value of the residues for this end-use is dependent on which part of the plant is utilised. For instance, coffee husks have sufficient structural carbohydrates to allow for decent yields of levulinic acid, formic acid, and furfural in DIBANET, however the leaves of the coffee plant do not. Leaves from the banana plant are also of less value for DIBANET than the other parts of the plant (e.g. stem).

A major output of this Deliverable is the downloadable electronic database that contains all of the WP2 analytical data obtained during the course of the project. It contains analytical data and predicted biorefining yields for a total of 1,281 samples. It can be obtained, free of charge, from the DIBANET website and will be a valuable tool for stakeholders in biorefining projects.

This document presents the data and evaluations that were made regarding biomass feedstocks, and also puts forward guidelines of best practice in terms of making the best use of these resources. A shortened version of this document can also be downloaded from the DIBANET website.

Hayes, D. J. M. (2011) Analysis of Lignocellulosic Feedstocks for Biorefineries with a Focus on The Development of Near Infrared Spectroscopy as a Primary Analytical Tool, PhD Thesis832 pages (over 2 volumes)


The processing of lignocellulosic materials in modern biorefineries will allow for the production of transport fuels and platform chemicals that could replace petroleum-derived products. However, there is a critical lack of relevant detailed compositional information regarding feedstocks relevant to Ireland and Irish conditions. This research has involved the collection, preparation, and the analysis, with a high level of precision and accuracy, of a large number of biomass samples from the waste and agricultural sectors. Not all of the waste materials analysed are considered suitable for biorefining; for example the total sugar contents of spent mushroom composts are too low. However, the waste paper/cardboard that is currently exported from Ireland has a chemical composition that could result in high biorefinery yields and so could make a significant contribution to Irelandís biofuel demands.

Miscanthus was focussed on as a major agricultural feedstock. A large number of plants have been sampled over the course of the harvest window (October to April) from several sites. These have been separated into their anatomical fractions and analysed. This has allowed observations to be made regarding the compositional trends observed within plants, between plants, and between harvest dates. Projections are made regarding the extents to which potential chemical yields may vary. For the DIBANET hydrolysis process that is being developed at the University of Limerick, per hectare yields of levulinic acid from Miscanthus could be 20% greater when harvested early compared with a late harvest.

The wet-chemical analysis of biomass is time-consuming. Near infrared spectroscopy (NIRS) has been developed as a rapid primary analytical tool with separate quantitative models developed for the important constituents of Miscanthus, peat, and (Australian) sugarcane bagasse. The work has demonstrated that accurate models are possible, not only for dry homogenous samples, but also for wet heterogeneous samples. For glucose (cellulose) the root mean square error of prediction (RMSEP) for wet samples is 1.24% and the R2 for the validation set ( ) is 0.931. High accuracies are even possible for minor analytes; e.g. for the rhamnose content of wet Miscanthus samples the RMSEP is 0.03% and the is 0.845. Accurate models have also been developed for pre-treated Miscanthus samples and are discussed. In addition, qualitative models have been developed. These allow for samples to be discriminated for on the basis of plant fraction, plant variety (giganteus/non-giganteus), harvest-period (early/late), and stand-age (one-year/older).

Quantitative NIRS models have also been developed for peat, although the heterogeneity of this feedstock means that the accuracies tend to be lower than for Miscanthus. The development of models for sugarcane bagasse has been hindered, in some cases, by the limited chemical variability between the samples in the calibration set. Good models are possible for the glucose and total sugars content, but the accuracy of other models is poorer. NIRS spectra of Brazilian bagasse samples have been projected onto these models, and onto those developed for Miscanthus, and the Miscanthus models appear to provide a better fit than the Australian bagasse models.

Other Celignis Research Projects Funded by the Horizon Programme

Current Projects

Enxylascope aims at bioprospecting and producing a novel set of xylan debranching enzymes, thereby demonstrating its ability to make xylan a key ingredient in a variety of consumer products. Celignis is playing a key role, being the technical lead and responsible for the extraction and modification of xylan from biomass. Further info...PERFECOAT, a RIA project funded by the BBI JU, targets the development of novel sustainable coatings that will ultimately be available to the public. Celignis is responsible for the extraction and modification of polymers (xylan and chitosan) that will be used as binders in these coatings. Further info...BIONEER, is an Innovation Action project funded by the CBE-JU, under topic HORIZON-JU-CBE-2023-IA-06 (Selective, Sustainable Production Routes Towards Bio-Based Alternatives To Fossil-Based Chemical Building Blocks). This project will start in May 2024 with Celignis, an SME partner and full industry BIC member, playing a leading role in the scaled-up (1 m3) production of platform chemicals. Further info...PROMOFER, is an Innovation Action project funded by the CBE-JU, under topic HORIZON-JU-CBE-2023-IA-03 (Improve Fermentation Processes (Including Downstream Purification) To Final Bio-Based Products). This project will start in June 2024 with Celignis, an SME partner and full industry BIC member, playing a pivotal role in the project. Our core activities include undertaking the pre-treatment and hydrolysis of lignocellulosic biomass at scaled-up (TRL7, 1 m3) volumes. The resulting sugars are then provided to other partners for downstream fermentations. Further info...MANUREFINERY, is an Innovation Action project funded by the CBE-JU, under topic HORIZON-JU-CBE-2023-IA-01 (Small Scale Biorefining In Rural Areas). This project will start in September 2024 with Celignis, an SME partner and full industry BIC member, involved in the analysis of feedstocks and products of the process. We are also contributing towards the technoeconomic analysis (TEA) of the technologies. Further info...This demo project involves innovative superheated steam processing of unwanted bush and invasive biomass into high-value, clean-burning, low-cost solid biofuel. Celignis will analyse feedstocks, and process outputs, and use our QTOF-LC/MS system to profile the steam condensate for high value chemicals. We will then develop a method to recover target constituents. Further info...BIO4AFRICA will empower smallholder farmers by creating value from locally available biomass. Celignis is analysing a wide range of biomass feedstocks, from a number of African countries, and providing recommendations regarding the most suitable ones, under the best conditions, for the given processing technology. We also analyse the outputs of the various processes. Further info...

Completed Projects

The BIOrescue project was focused on developing technologies to convert spent mushroom compost, a problematic waste of the mushroom industry, to high value products. Within the project Celignis undertook a compositional profiling study of the feedstocks and developed rapid analysis models for these and process outputs. Further info...The UNRAVEL project (UNique Refinery Approach to Valorise European Lignocellulosics) is focused on the optimsiation of a biomass pre-treatment technology. Celignis plays a key role by analysing and evaluating the extractives present in a wide variety of feedstocks and determining how they influence pre-treatment. Further info...The focus of ENABLING was on supporting the spreading of best practices and innovation in the provision of biomass for the Bio-Based Industry (BBI). Celignis played a key role in the project with regards to stressing the importance of biomass composition in terms of evaluating feedstock and technology suitability. Further info...Celignis was the sole partner in SAPHIRE. The project, funded by the European Union's INNOSUP programme, concerned the production of high-value hydrogels from lignocellulosic residues. These are expected to have applications in the cosmetic and pharmaceutical sectors. Further info...VAMOS concerns the construction and operation of a demonstration-scale biorefinery producing lactic acid from the paper fraction of municipal waste. In the project Celignis will develop custom NIR models for the rapid at-line on-site analysis of the feedstock and process outputs. Further info...This was a Marie-Curie Individual Fellowship (MCSA-IF) involving Celignis's Lalitha in which algae were used to recover nutrients from anaerobic digestion (AD) process streams. Further info...

Other Celignis Research Projects

Current Projects

Celignis is the sole partner in STEAME, a project funded by the Irish Research Council and focused on the development of technologies to make anaerobic digestion more financially viable in Ireland. Further info...