Research project at Celignis


"Self-Assembling Plant-based Hydrogels Induced by Redox Enzymes"

ProgrammeHorizon Europe, INNOSUP-02-2019-2020
Period2019 - 2021
The SAPHIRE process was aimed at plant-based, environment-friendly, high-quality hydrogels for the food, cosmetic and pharmaceutical industries. Such eco-friendly high quality, 100% plant-based hydrogels were targeted to be produced in an eco-friendly manner and to command a green-premium product price for the product, especially in the target markets of food, and the cosmetic and medical industries.

In the eco-friendly SAPHIRE process, enzymes help in reducing the energy and chemicals demand in the fractionation of plant biomass to xylan, cellulosem, and lignin. They also help in the controlled deconstruction of plant biomass and thereafter in the ordered assembly of xylan and nanocellulose fractions to form hydrogels with lignin monomers as cross-linking agents.

biomass fractionation in SAPHIRE

SAPHIRE process

This was done through an integrated biorefinery process incorporating the following innovations:
1. Fractionation and modification of highly abundant plant polymers, cellulose and hemicellulose using a chemo-enzymatic approach.
2. Enhancing the mechanical, structural and chemical properties of xylan hydrogels by forming composites with nanocellulose through the action of enzymes.
3. Natural cross-linking of the cellulose and xylan polymers by redox enzymes using lignin-derived monomers.
4. Design of enzyme cocktails of glycosyl hydrolases and redox enzymes for one-pot synthesis and cross-linking of xylan-based hydrogels.

Other Celignis Research Projects Funded by the Horizon Programme

Current Projects

Enxylascope aims at bioprospecting and producing a novel set of xylan debranching enzymes, thereby demonstrating its ability to make xylan a key ingredient in a variety of consumer products. Celignis is playing a key role, being the technical lead and responsible for the extraction and modification of xylan from biomass. Further info...PERFECOAT, a RIA project funded by the BBI JU, targets the development of novel sustainable coatings that will ultimately be available to the public. Celignis is responsible for the extraction and modification of polymers (xylan and chitosan) that will be used as binders in these coatings. Further info...The UNRAVEL project (UNique Refinery Approach to Valorise European Lignocellulosics) is focused on the optimsiation of a biomass pre-treatment technology. Celignis plays a key role by analysing and evaluating the extractives present in a wide variety of feedstocks and determining how they influence pre-treatment. Further info...VAMOS concerns the construction and operation of a demonstration-scale biorefinery producing lactic acid from the paper fraction of municipal waste. In the project Celignis will develop custom NIR models for the rapid at-line on-site analysis of the feedstock and process outputs. Further info...This demo project involves innovative superheated steam processing of unwanted bush and invasive biomass into high-value, clean-burning, low-cost solid biofuel. Celignis will analyse feedstocks, and process outputs, and use our QTOF-LC/MS system to profile the steam condensate for high value chemicals. We will then develop a method to recover target constituents. Further info...BIO4AFRICA will empower smallholder farmers by creating value from locally available biomass. Celignis is analysing a wide range of biomass feedstocks, from a number of African countries, and providing recommendations regarding the most suitable ones, under the best conditions, for the given processing technology. We also analyse the outputs of the various processes. Further info...

Completed Projects

DIBANET was an FP7 research project, written and coordinated by Celignis founder Dan Hayes, that concerned the production of second generation biofuels from biomass feedstocks in Europe and Latin America. The advances in the state of the art of biomass analysis made in DIBANET led to the formation of Celignis. Further info...The BIOrescue project was focused on developing technologies to convert spent mushroom compost, a problematic waste of the mushroom industry, to high value products. Within the project Celignis undertook a compositional profiling study of the feedstocks and developed rapid analysis models for these and process outputs. Further info...The focus of ENABLING was on supporting the spreading of best practices and innovation in the provision of biomass for the Bio-Based Industry (BBI). Celignis played a key role in the project with regards to stressing the importance of biomass composition in terms of evaluating feedstock and technology suitability. Further info...This was a Marie-Curie Individual Fellowship (MCSA-IF) involving Celignis's Lalitha in which algae were used to recover nutrients from anaerobic digestion (AD) process streams. Further info...

Other Celignis Research Projects

Current Projects

Celignis is the sole partner in STEAME, a project funded by the Irish Research Council and focused on the development of technologies to make anaerobic digestion more financially viable in Ireland. Further info...

Celignis News Articles on SAPHIRE

June 30th 2019

We are Hiring! Innovation Developer Wanted

We are looking for top-class applicants to develop bioprocessing IP at Celignis

We are pleased to announce that we have been selected to be awarded funding, through the Horizon 2020 Innosup Innovation Associate programme, to recruit a top-class person to lead the development of our bioprocess concept into a patentable process and prototype product with clear commercial potential.

The SAPHIRE (Self-Assembling Plant-based Hydrogels Induced by Redox Enzymes) project focuses on the production of environmentally-friendly, 100% plant-based, superior-quality hydrogels for food, cosmetic and pharmaceutical applications.

The position has a salary of €69.5k for one year, plus €20k of training and €3.5k in relocation funds.

Please click here for further information on the position and how to apply.