• Inoculum Analysis
    For Anaerobic Digestion

Content coming soon

Publications on Inoculum By The Celignis Team

S. S. Nilegaonkar, V. P. Zambare, P. P. Kanekar, P. K. Dhakephalkar and S. S. Sarnaik (2007) Production and partial characterization of dehairing protease from Bacillus cereus MCM B-326, Bioresource Technology 98(6): 1238-1245

Link

Bacillus cereus MCM B-326, isolated from buffalo hide, produced an extracellular protease. Maximum protease production occurred (126.87+/-1.32 U ml(-1)) in starch soybean meal medium of pH 9.0, at 30 degrees C, under shake culture condition, with 2.8 x 10(8) cells ml(-1) as initial inoculum density, at 36 h. Ammonium sulphate precipitate of the enzyme was stable over a temperature range of 25-65 degrees C and pH 6-12, with maximum activity at 55 degrees C and pH 9.0. The enzyme required Ca(2+) ions for its production but not for activity and/or stability. The partially purified enzyme exhibited multiple proteases of molecular weight 45 kDa and 36 kDa. The enzyme could be effectively used to remove hair from buffalo hide indicating its potential in leather processing industry

V. P. ZambareS. S. NilegaonkarP. P. Kanekar (2007) Production of an alkaline protease by Bacillus cereus MCM B-326 and its application as a dehairing agent, World Journal of Microbiology and Biotechnology 23(11): 15691574

Link

The present investigation describes microbial production of an alkaline protease and its use in dehairing of buffalo hide. Bacillus cereus produced extracellular protease when grown on a medium containing starch, wheat bran and soya flour (SWS). The ammonium sulphate precipitated (ASP) enzyme was applied for dehairing of buffalo hide. Microscopic observation of longitudinal section of buffalo hide revealed that the epidermis was completely removed and hair was uprooted leaving empty follicles in the hide. The ASP enzyme was stable for one month at ambient temperature between 2535 C. Enzymatic dehairing may be a promising shift towards an environment-friendly leather processing method.



...