• Bioprocess Development
    At Celignis Analytical

To know more about how Celignis can help you with Bioprocess Development please click here.

Publications on Bioprocess Development By The Celignis Team

Swart, L. J., Bedzo, O. K. K., van Rensburg, E., Gorgens, J. F. (2022) Pilot-scale xylooligosaccharide production through steam explosion of screw press-dried brewers spent grains, Biomass Conversion and Biorefinery 12: 1295-1309


Brewers spent grains (BSGs) represent the largest quantity of solid waste from brewing, while xylooligosaccharides (XOS) produced from BSG show promising applications in food, beverage and health products. Production of XOS from a Weiss and malt BSG was scaled-up in steam explosion hydrothermal treatment using process conditions from bench-scale liquid hot water optimisations in stirred batch reactors. Three levels of moisture (15, 25 and 32% dry matter) achieved by screw press dewatering were evaluated by varying the treatment temperatures and times. Results show the highest XOS yields (73.1%) were obtained, for both BSGs, at process condition selected (180 C, 10 min) with 25% initial dry matter content. These yields were higher than reported bench-scale optimisations (61%), but obtained using 60% less water; hence, initial dry matter content was an important variable affecting XOS yield. The pilot-scale steam explosion results provide a departing point for a cost-effective commercial production of XOS from BSG.

Swart, L. J., Bedzo, O. K. K., van Rensburg, E., Gorgens, J. F. (2021) Intensification of Xylo-oligosaccharides Production by Hydrothermal Treatment of Brewers Spent Grains: The Use of Extremely Low Acid Catalyst for Reduction of Degradation Products Associated with High Solid Loading, Applied Biochemistry and Biotechnology 193: 1979-2003


Brewers' spent grains (BSG) make up to 85% of a brewery's solid waste, and is either sent to landfill or sold as cheap animal feed supplement. Xylo-oligosaccharides (XOS) obtained from BSG are antioxidants and prebiotics that can be used in food formulations as low-calorie sweeteners and texturisers. The effect of extremely low acid (ELA) catalysis in liquid hot water (LHW) hydrothermal treatment (HTT) was assessed using BSG with dry matter contents of 15% and 25%, achieved by dewatering using a screw press. Batch experiments at low acid loadings of 5, 12.5 and 20 mg/g dry mass and temperatures of 120, 150 and 170 C significantly affected XOS yield at both levels of dry mass considered. Maximum XOS yields of 76.4% (16.6 g/l) and 65.5% (31.7 g/l) were achieved from raw BSG and screw pressed BSG respectively, both at 170 C and using 5 mg acid/g dry mass, after 15 min and 5 min, respectively. These XOS yields were obtained with BSG containing up to 63% less water and temperatures more than 20 C lower than that reported previously. The finding confirms that ELA dosing in LHW HTT allows lowering of the required temperature that can result in a reduction of degradation products, which is especially relevant under high solid conditions. This substantial XOS production intensification through higher solid loadings in HTT not only achieved high product yield, but also provided benefits such as increased product concentrations and decreased process heat requirements.

Swart, L. J., Peterson, A. M., Bedzo, O. K. K., Gorgens, J. F. (2021) Techno-economic analysis of the valorization of brewers spent grains: production of xylitol and xylo-oligosaccharides, Journal of Chemical Technology & Biotechnology 96(6): 1632-1644


Brewers spent grains (BSG) represents around 85% of a brewery's solid waste and common disposal to landfill is increasingly more difficult. Yet BSG is a food-grade by-product with potential economic valorization that can significantly improve resource efficiency and reduction in carbon emissions. This study investigated valorization of BSG through the application of novel high solids hydrothermal processing technology in a small-scale biorefinery, annexed to a brewery. It focused on three scenarios for the production of: (A) the sugar replacement xylitol; (B) prebiotic xylo-oligosaccharide (XOS); and (C) co-production of xylitol and XOS. Economic assessment was conducted by comparing the capital and operating expenditure from process simulations created in Aspen Plus. The process models developed were supplemented with experimental data to improve accuracy.
Internal rate of return (IRR) values obtained were greater than the hurdle rate of 9.7% for all scenarios when considering a conservative market price for xylitol and XOS as US$4500 t-1, yet dedicated production of XOS was economically more favourable with a minimum required selling price (MRSP) of US$2509 t-1 compared to US$4153 t-1 for xylitol. Additionally, the scenario for co-production of xylitol and XOS achieved the lowest MRSP of US$2182 t-1. By-products significantly contributed to 32.7%, 14.2% and 27.5% of the revenue generated in scenarios A, B and C, respectively.
These results provide a good platform from which to develop the cost-effective commercial production of XOS and xylitol from BSG.

Bedzo, O. K. K., van Rensburg, E. and Gorgens, J. F. (2021) Investigating the effect of different inulin-rich substrate preparations from Jerusalem artichoke (Helianthus tuberosus L.) tubers on efficient inulooligosaccharides production, Preparative Biochemistry and Biotechnology 51(5): 440-449


Commercial production of inulooligosaccharides (IOS) relies largely on chicory roots. However, Jerusalem artichoke (JA) tubers provide a suitable alternative due to their high inulin content and low cultivation requirements. In this study, three inulin-rich substrate preparations from JA were investigated to maximize IOS production, namely powder from dried JA tuber slices (Substrate 1), solid residues after extracting protein from the JA powder (Substrate 2) and an inulin-rich fraction extracted from protein extraction residues (Substrate 3). The preferred temperature, pH and inulin substrate concentration were determined after which enzyme dosage and extraction time were optimized to maximize IOS extraction from the three substrates, using pure chicory inulin as benchmark. Under the optimal conditions, Substrate 3 resulted in the highest IOS yield of 82.3% (w/winulin). However, IOS production from the Substrate 1 proved more efficient since it renders the highest overall IOS yield (mass of IOS per mass of the starting biomass). In the case of co-production of protein and IOS from the JA tuber in a biorefinery concept, IOS production from the Substrate 2 is preferred since it reduces the inulin losses incurred during substrate preparation. For all the inulin-rich substrates studied, an enzyme dosage of 14.8 U/ginulin was found to be optimal at reaction time less than 6 h. JA tuber exhibited excellent potential for commercial production of IOS with improved yield and the possible advantage of a reduced biomass cost.

Bedzo, O. K. K., Dreyer, C. B., van Rensburg, E., Gorgens, J. F. (2021) Optimisation of Pretreatment Catalyst , Enzyme Cocktail and Solid Loading for Improved Ethanol Production from Sweet Sorghum Bagasse, BioEnergy Research


weet sorghum bagasse displays many characteristics rendering it a promising substrate for lignocellulosic ethanol production. In this study, the steam pretreatment catalyst, enzymatic hydrolysis and the substrate loading for the fermentation were investigated in order to maximise the production of ethanol from the feedstock. The results deemed water as a sufficient pretreatment catalyst since the SO2 impregnation of the biomass did not produce any significant beneficial effects on the yield of ethanol produced. The preferred pretreatment and enzymatic hydrolysis conditions were incorporated in a fed-batch simultaneous saccharification and fermentation (SSF) process using pressed-only (not washed) WIS at a final solid loading of 13% (w/w) that resulted in the targeted ethanol concentration of 39 g/L with a corresponding yield of 82% of the theoretical maximum. Yeast inhibition coupled with significant glucose accumulation was observed at higher solid loadings of 16% and 20%. Ultimately, the sweet sorghum bagasse could be integrated into existing ethanol production regimes to improve the global bioenergy production.

Bedzo, O. K. K., Mandegari, M. and Gorgens, J. F. (2020) Techno-economic analysis of inulooligosaccharides, protein, and biofuel co-production from Jerusalem artichoke tubers: A biorefinery approach, Biofuels Bioproducts & Biorefining-Biofpr 14(4): 776-793


Jerusalem artichoke (JA) is a crop with excellent potential for application in biorefineries. It can resist drought, pests, and diseases and can thrive well in marginal lands with little fertilizer application. The JA tubers contain considerable quantities of inulin, which is suitable for the production of inulooligosaccharides (IOS), as a high-value prebiotic, dietary fiber. In this study, five JA tuber biorefinery scenarios were simulated in Aspen Plus and further evaluated by techno-economic and sensitivity analyses. Production of IOS, proteins and animal feed was studied in scenarios A and C, applying various biorefinery configurations. Scenario B explored the option of producing only IOS and the sale of residues as animal feed. Scenarios D and E investigated the economic potential of biofuel generation from residues after IOS and protein production by generation of biogas and ethanol respectively, from residues. Based on the chosen economic indicators, scenario B resulted in the lowest minimum selling price (MSP) of 3.91 US$ kg-1 (market price 5.0 US$ kg-1) with correspondingly reduced total capital investment (TCI) and total operating cost (TOC) per mass unit produced of IOS of 18.91 and 2.59 US$ kg-1 respectively, compared with other studied scenarios. Considering the set production scale, it is more profitable when the residues are sold as animal feed instead of being converted into biofuel, due to the capital-intensive nature of the biofuel production processes. The coproduction of protein had a negative impact on the economics of the process as the associated capital and operating expenditure outweighed the associated revenue.

Bedzo, O. K. K., Mandegari, M. and Gorgens, J. F. (2020) Comparison of immobilized and free enzyme systems in industrial production of short-chain fructooligosaccharides from sucrose using a techno-economic approach, Biofuels Bioproducts & Biorefining-Biofpr 14(4): 776-793


Short-chain fructooligosaccharides (scFOS) are nutraceuticals with numerous applications in the food and pharmaceutical industries. The production of scFOS using immobilized biocatalysts offers some functional and technical advantages over free enzyme counterparts. To investigate the economic potential of the immobilized enzyme system relative to the free enzyme system, a techno-economic comparison was conducted on three methods of scFOS production (powder and syrup forms) at a capacity of 2000?t per annum (tpa) by enzymatic synthesis from sucrose: the free enzyme (FE), calcium alginate immobilized enzyme (CAIE), and amberlite IRA 900 immobilized enzyme (AIE) systems. These processes were simulated in Aspen Plus to obtain the mass and energy balances and to estimate the operating and capital costs, followed by economic evaluation and sensitivity analysis. Profitability analysis showed that all three systems are economically viable as their associated minimum selling prices (MSP) were well below the scFOS market price of 5 $ kg-1. However, the FE system was the most profitable with the lowest MSP of 2.61 $ kg-1 because the savings on cost as a result of enzyme immobilization could not offset the additional costs associated with immobilization. Sensitivity analysis demonstrated that total operating cost, fixed capital investment, and internal rate of return (% IRR) have the greatest effects on the MSP. Furthermore, the syrup form of scFOS production leads to 29% less MSP, compared to powder form. In addition, the studied plant capacities of 5000 and 1000?tpa showed 10% and 16% reductions on MSP respectively.

Bedzo, O. K. K., Trollope, K., Gottumukkala, L. D., Coetzee, G., Gorgens, J. F. (2019) Amberlite IRA 900 Versus Calcium Alginate in Immobilization of a Novel , Engineered B-fructofuranosidase for Short-Chain Fructooligosaccharide Synthesis from Sucrose, Biotechnology Progress 35(3): 1-9


The immobilization of B-fructofuranosidase for short-chain fructooligosaccharide (scFOS) synthesis holds the potential for a more efficient use of the biocatalyst. However, the choice of carrier and immobilization technique is a key to achieving that efficiency. In this study, calcium alginate (CA), Amberlite IRA 900 (AI900) and Dowex Marathon MSA (DMM) were tested as supports for immobilizing a novel engineered B-fructofuranosidase from Aspergillus japonicus for scFOS synthesis. Several immobilization parameters were estimated to ascertain the effectiveness of the carriers in immobilizing the enzyme. The performance of the immobilized biocatalysts are compared in terms of the yield of scFOS produced and reusability. The selection of carriers and reagents was motivated by the need to ensure safety of application in the production of food-grade products. The CA and AI900 both recorded impressive immobilization yields of 82 and 62%, respectively, while the DMM recorded 47%. Enzyme immobilizations on CA, AI900 and DMM showed activity recoveries of 23, 27, and 17%, respectively. The CA, AI900 immobilized and the free enzymes recorded their highest scFOS yields of 59, 53, and 61%, respectively. The AI900 immobilized enzyme produced a consistent scFOS yield and composition for 12 batch cycles but for the CA immobilized enzyme, only 6 batch cycles gave a consistent scFOS yield. In its first record of application in scFOS production, the AI900 anion exchange resin exhibited potential as an adequate carrier for industrial application with possible savings on cost of immobilization and reduced technical difficulty.

Haigh K.F, Petersen A.M, Gottumukkala, L, Mandegari M, Naleli, K, Gorgens J.F (2018) Simulation and comparison of processes for biobutanol production from lignocellulose via ABE fermentation, Biofuels, Bioproducts and Biorefining 12(6): 1023-1036

Six conceptual process scenarios for the production of biobutanol from lignocellulosic biomass through acetone?butanol?ethanol (ABE) fermentation, using reported data on process performances, were developed with ASPEN Plus® V8.2 software. The six scenarios covered three fermentation strategies, i.e. batch separate hydrolysis and fermentation (SHF), continuous SHF, and batch simultaneous saccharification and fermentation (SSF) integrated with gas stripping (GS). The two downstream processing options considered were double?effect distillation (DD) and liquid?liquid extraction and distillation (LLE&D). It was found that the SSF?GS/DD scenario was the most energy efficient with a liquid fuel efficiency of 24% and an overall efficiency of 31%. This was also the scenario with the best economic outcome, with an internal rate of return (IRR) of 15% and net present value (NPV) of US$387 million. The SSF?GS/DD scenario was compared to a similar molasses process, based on the product flow rates, and it was found that the molasses process was more energy efficient with a gross energy value (GEV) of 23?MJ?kg1 butanol compared to ?117?MJ?kg1 butanol for the lignocellulosic process. In addition, the molasses?based process was more profitable with an IRR of 36% compared to 21%. However, the energy requirements for the molasses process were supplied from fossil fuels, whereas for the lignocellulose processes a portion of the feedstock was diverted to provide process energy. Improved environmental performance is therefore associated with the lignocellulosic process.

Gottumukkala L.D, Haigh K, Gorgens J (2017) Trends and advances in conversion of lignocellulosic biomass to biobutanol: microbes, bioprocesses and industrial viability, Renewable and Sustainable Energy Reviews 76: 963-973

Biobutanol has gained attention as an alternative renewable transportation fuel for its superior fuel properties and widespread applications in chemical industry, primarily as a solvent. Conventional butanol fermentation has drawbacks that include strain degeneration, end-product toxicity, by-product formation, low butanol concentrations and high substrate cost. The complexity of Clostridium physiology and close control between sporulation phase and ABE fermentation has made it demanding to develop industrially potent strains. In addition to the isolation and engineering of superior butanol producing bacteria, the development of advanced cost-effective technologies for butanol production from feedstock like lignocellulosic biomass has become the primary research focus. High process costs associated with complex feedstocks, product toxicity and low product concentrations are few of the several bioprocess challenges involved in biobutanol production. The article aims to assess the challenges in lignocellulosic biomass to biobutanol conversion and identify key process improvements that can make biobutanol commercially viable.

Gottumukka L.D, Haigh K, Collard F.X, Van Rensburg E, Gorgens J (2016) Opportunities and prospects of biorefinery-based valorisation of pulp and paper sludge, Bioresource technology 215: 37-49

The paper and pulp industry is one of the major industries that generate large amount of solid waste with high moisture content. Numerous opportunities exist for valorisation of waste paper sludge, although this review focuses on primary sludge with high cellulose content. The most mature options for paper sludge valorisation are fermentation, anaerobic digestion and pyrolysis. In this review, biochemical and thermal processes are considered individually and also as integrated biorefinery. The objective of integrated biorefinery is to reduce or avoid paper sludge disposal by landfilling, water reclamation and value addition. Assessment of selected processes for biorefinery varies from a detailed analysis of a single process to high level optimisation and integration of the processes, which allow the initial assessment and comparison of technologies. This data can be used to provide key stakeholders with a roadmap of technologies that can generate economic benefits, and reduce carbon wastage and pollution load.

Boshoff A, Gottumukka L.D, Van Rensburg E, Gorgens J (2016) Paper sludge (PS) to bioethanol: Evaluation of virgin and recycle mill sludge for low enzyme, high-solids fermentationl, Bioresource technology 23: 103-111

Paper sludge (PS) from the paper and pulp industry consists primarily of cellulose and ash and has significant potential for ethanol production. Thirty-seven PS samples from 11 South African paper and pulp mills exhibited large variation in chemical composition and resulting ethanol production. Simultaneous saccharification and fermentation (SSF) of PS in fed-batch culture was investigated at high solid loadings and low enzyme dosages. Water holding capacity and viscosity of the PS influenced ethanol production at elevated solid loadings of PS. High viscosity of PS from virgin pulp mills restricted the solid loading to 18% (w/w) at an enzyme dosage of 20 FPU/gram dry PS (gdPS), whereas an optimal solid loading of 27% (w/w) was achieved with corrugated recycle mill PS at 11 FPU/gdPS. Ethanol concentration and yield of virgin pulp and corrugated recycle PS were 34.2 g/L at 66.9% and 45.5 g/L at 78.2%, respectively.

Gottumukkala L.D. Gorgens J.F (2016) Biobutanol production from lignocellulosics, Biofuels Production and future perspectives, Singh R.S, Pandey A, Gnansounou E, Taylor & Francis group

Next-generation biofuels from renewable sources have gained interest among research investigators, industrialists, and governments due to major concerns on the volatility of oil prices, climate change, and depletion of oil reserves. Biobutanol has drawn signicant attention as an alternative transportation fuel due to its superior fuel properties over ethanol. e advantages of butanol are its high energy content, better blending with gasoline, less hydroscopic nature, lower volatility, direct use in convention engines, low corrosiveness, etc. Butanol production through (acetone, butanol, and ethanol) ABE fermentation is a well-established process, but it has several drawbacks like feedstock cost, strain degeneration, product toxicity, and low product concentrations. Lignocellulosic biomass is considered as the most abundant, renewable, low-cost feedstock for biofuels. Production of butanol from lignocellulosic biomass is more complicated due to the recalcitrance of feedstock and inhibitors generated during the pretreatment and hydrolysis process. Advanced fermentation and product recovery techniques are being researched to make biobutanol industrially viable.

Sajna K.P, Sukumaran R.K, Gottumukkala L.D, Pandey A (2015) Crude oil biodegradation aided by biosurfactants from Pseudozyma sp. NII 08165 or its culture broth, Bioresource technology 191: 133-139

The aim of this work was to evaluate the biosurfactants produced by the yeast Pseudozyma sp. NII 08165 for enhancing the degradation of crude oil by a model hydrocarbon degrading strain, Pseudomonas putida MTCC 1194. Pseudozyma biosurfactants were supplemented at various concentrations to the P. putida culture medium containing crude oil as sole carbon source. Supplementation of the biosurfactants enhanced the degradation of crude oil by P. putida; the maximum degradation of hydrocarbons was observed with a 2.5 mg L?1 supplementation of biosurfactants. Growth inhibition constant of the Pseudozyma biosurfactants was 11.07 mg L?1. It was interesting to note that Pseudozyma sp. NII 08165 alone could also degrade diesel and kerosene. Culture broth of Pseudozyma containing biosurfactants resulted up to ?46% improvement in degradation of C10–C24 alkanes by P. putida. The enhancement in degradation efficiency of the bacterium with the culture broth supplementation was even more pronounced than that with relatively purer biosurfactants.

Gottumukkala L.D, Sukumaran R.K. Mohan S.V. Valappil S.K. Sarkar O, Pandey A (2015) Rice straw hydrolysate to fuel and volatile fatty acid conversion by Clostridium sporogenes BE01: bio-electrochemical analysis of the electron transport mediators involved, Green chemistry 17(5): 3047-3058

Clostridium sporogenes BE01, a non-acetone forming butanol producer, can produce hydrogen and volatile fatty acids (VFAs) during butanol fermentation from rice straw hydrolysate. Bio-electrochemical analysis revealed the changes that occurred in the redox microenvironment and electron transport mediators during fermentation at different pH and CaCO3 concentrations. CaCO3 played a very important role in enhancing the production of hydrogen, volatile fatty acids and solvents by stimulating the changes in the electron transport system. The electron transport system mediated by NAD/NADH, flavins, Fe–S clusters, protein bound FAD, and cytochrome complex in C. sporogenes BE01 was analysed by cyclic voltammetry (CV). Electrokinetic analysis revealed that the favorability for redox reactions increased with an increase in pH, and the polarization resistance reduced significantly with CaCO3 supplementation.

Sajna K.V, Gottumukkala L.D, Sukumaran R.K, Pandey A. (2015) White biotechnology in cosmetics, Industrial Biorefineries & White Biotechnology, Pandey A, Hofer R, Taherzadeh M, Nampoothiri K.M. Larroche C. , Elsevier


White biotechnology makes use of fermentation technology to produce various primary and secondary metabolites from microorganisms, plants, and animal cells at commercial level. Cosmetic industry has been using a variety of biotechnologically derived compounds in their cosmetic formulations due to their interesting skin- and hair-care functions and their potential to replace the harmful synthetic compounds. Biocompatibility, eco-friendly nature, versatile activity, and the superior performance are the major attributes offered by biotechnologically derived cosmetic ingredients. Some popular examples are epidermal growth factor, botulinum toxin, collagen, ceramide, and kojic acid. Purifications of bioactive molecules from the complex crude plant or animal extracts were made possible with the use of biorefinery and bioconversion techniques. Addition of pure phytochemicals in cosmetic formulations eliminated the need of adding the crude plant extract which usually results in contraindicatory symptoms and side effects. Recombinant DNA technology and genetic engineering allow the stable, large-scale production of bioactive molecules, which also avoid various ethical concerns usually associated with production and extraction of molecules, such as placental-derived proteins. Strain improvement and metabolic engineering addressed the challenges such as feedback regulation in the large-scale production of microbial compounds. This chapter discusses various dermatological and hair-care functions exhibited by biotechnologically derived compounds and structural classifications along with production aspects. This chapter also emphasizes the exploration of novel bioactive compounds for their cosmaceutical properties, and thus be a welcome addition to the modern cosmetic formulations.

Thomas L, Joseph A, Gottumukkala L.D. (2014) Xylanase and cellulase systems of Clostridium sp.: an insight on molecular approaches for strain improvement, Bioresource technology 158: 343-350

Bioethanol and biobutanol hold great promise as alternative biofuels, especially for transport sector, because they can be produced from lignocellulosic agro-industrial residues. From techno-economic point of view, the bioprocess for biofuels production should involve minimal processing steps. Consolidated bioprocessing (CBP), which combines various processing steps such as pretreatment, hydrolysis and fermentation in a single bioreactor, could be of great relevance for the production of bioethanol and biobutanol or solvents (acetone, butanol, ethanol), employing clostridia. For CBP, Clostridium holds best promise because it possesses multi-enzyme system involving cellulosome and xylanosome, which comprise several enzymes such as cellulases and xylanases. The aim of this article was to review the recent developments on enzyme systems of clostridia, especially xylanase and cellulase with an effort to analyse the information available on molecular approaches for the improvement of strains with ultimate aim to improve the efficiencies of hydrolysis and fermentation.

Gottumukkala L.D, Parameswaran B, Valappil S.K, Pandey A (2014) Growth and butanol production by Clostridium sporogenes BE01 in rice straw hydrolysate: kinetics of inhibition by organic acids and the strategies for their removal, Biomass Conversion and Biorefinery 4(3): 277-283

Growth inhibition kinetics of a novel non-acetone forming butanol producer, Clostridium sporogenes BE01, was studied under varying concentrations of acetic and formic acids in rice straw hydrolysate medium. Both the organic acids were considered as inhibitors as they could inhibit the growth of the bacterium, and the inhibition constants were determined to be 1.6 and 0.76 g/L, respectively, for acetic acid and formic acid. Amberlite resins—XAD 4, XAD 7, XAD 16, and an anion exchange resin—Seralite 400 were tested for the efficient removal of these acidic inhibitors along with minimal adsorption of sugars and essential minerals present in the hydrolysate. Seralite 400 was an efficient adsorbent of acids, with minimal affinity towards minerals and sugars. Butanol production was evaluated to emphasize the effect of minerals loss and acids removal by the resins during detoxification.

Hayes, D. J. M. (2013) Report on Optimal Use of DIBANET Feedstocks and Technologies, DIBANET WP5 Report84 pages


The DIBANET process chain, as a result of its patented pre-treatment stage, has significantly increased the yields of levulinic acid, formic acid, and furfural beyond what was considered to be the state of the art. By fractionating lignocellulosic biomass into its three main polymers (cellulose, hemicellulose, lignin) it has also allowed for lignin to be recovered and sold as a higher-value product. These developments have meant that the amount of acid hydrolysis residues (AHRs) that have been produced are significantly (up to 88%) less than in the Biofine process. These AHRs are required to provide process heat for DIBANET. Direct combustion is the most efficient means for doing this. If such combustion does not occur and the AHRs are instead used in other processes, e.g. pyrolysis and gasification, then more biomass will need to be purchased to fuel the core DIBANET process. The AHRs have not been proven to be superior to virgin biomass when put through these thermochemical processes. Indeed, many of the results from DIBANET Work Package 4 indicate the opposite. Hence, given that DIBANET, and the modelling of its optimal configuration, is designed on the basis of an integrated process, centred on the core element of the acid hydrolysis of biomass, then combustion is the only viable end use for the AHRs. Given that realisation, the focus of this modelling Deliverable is on what the optimal configuration of the process chain would be regarding the three core stages (pretreatment, hydrolysis, and the esterification of levulinic acid with ethanol). It has been demonstrated that a scenario incorporating only the first stage can be profitable in its own right and allow for commercial development at much lower capital costs. In this instance bagasse is a much more attractive feedstock, compared with Miscanthus, due to its higher pentose content.

Integrating the second stage increases capital costs but improves the net present value. The esterification step is somewhat capital intensive but an integrated DIBANET biorefinery that incorporates all three stages can still be highly profitable providing the furfural is sold at its current market price and the lignin is sold rather than used as a fuel for process needs. Indeed, the DIBANET process should not be considered only in the context of biofuels but as a true biorefinery that produces lower value fuels (e.g. ethyl-levulinate) in addition to high value chemicals and bio-products (e.g. furfural and lignin).

The energy and carbon balances of the various DIBANET scenarios have been investigated and are highly positive with values significantly superior to those for the energy-intensive Biofine process. A socioeconomic survey has also been carried out and has shown that there can be a positive effect on employment, both direct and indirect, particularly when Miscanthus is used as the feedstock. The DIBANET integrated process also holds up well when its environmental and social performances are ranked for a range of important parameters.

The development of the core DIBANET IP towards commercial deployment appears to be warranted, based on data provided from the models developed. Indeed, these models present possible scenarios whereby even demonstration-scale DIBANET facilities could operate at significant profits and provide healthy returns on the capital invested.

Gottumukkala, L. D, Valappi, S. K. (2013) Biobutanol production from rice straw by a non acetone producing Clostridium sporogenes BE01, Bioresource Technology 145: 182-187

Biobutanol from lignocellulosic biomass has gained much attention due to several advantages over bioethanol. Though microbial production of butanol through ABE fermentation is an established technology, the use of lignocellulosic biomass as feedstock presents several challenges. In the present study, biobutanol production from enzymatic hydrolysate of acid pretreated rice straw was evaluated using Clostridium sporogenes BE01. This strain gave a butanol yield of 3.43 g/l and a total solvent yield of 5.32 g/l in rice straw hydrolysate supplemented with calcium carbonate and yeast extract. Hydrolysate was analyzed for the level of inhibitors such as acetic acid, formic acid and furfurals which affect the growth of the organism and in turn ABE fermentation. Methods for preconditioning the hydrolysate to remove toxic end products were done so as to improve the fermentation efficiency. Conditions of ABE fermentation were fine tuned resulting in an enhanced biobutanol reaching 5.52 g/l.

Gottumukkala L.D, Parameswaran B, Valappil S.K, Mathiyazhakan, K (2013) Biobutanol production from rice straw by a non acetone producing Clostridium sporogenes BE01, Bioresource technology 145: 182-187

Biobutanol from lignocellulosic biomass has gained much attention due to several advantages over bioethanol. Though microbial production of butanol through ABE fermentation is an established technology, the use of lignocellulosic biomass as feedstock presents several challenges. In the present study, biobutanol production from enzymatic hydrolysate of acid pretreated rice straw was evaluated using Clostridium sporogenes BE01. This strain gave a butanol yield of 3.43 g/l and a total solvent yield of 5.32 g/l in rice straw hydrolysate supplemented with calcium carbonate and yeast extract. Hydrolysate was analyzed for the level of inhibitors such as acetic acid, formic acid and furfurals which affect the growth of the organism and in turn ABE fermentation. Methods for preconditioning the hydrolysate to remove toxic end products were done so as to improve the fermentation efficiency. Conditions of ABE fermentation were fine tuned resulting in an enhanced biobutanol reaching 5.52 g/l.

Sajna K.V, Sukumaran R.K, Gottumukkala L.D, Jayamurthy H, Dhar K.S (2013) Studies on structural and physical characteristics of a novel exopolysaccharide from Pseudozyma sp. NII 08165, International Journal of Biological Macromolecules 59: 84-89


The aim of this work was to study the production of exopolysaccharide (EPS) from a novel ustilaginomycetes yeast strain Pseudozyma sp. NII 08165. The culture produced 3.5g/l EPS on fourth day of fermentation in a glucose-based medium. The structural characterization revealed that the EPS was a polymer of glucose, galactose and mannose in the ratio of 2.4:5.0:2.6 with a molecular weight of 1.7MDa. The pseudoplastic behaviour of aqueous EPS with a thermal stability up to 220 C indicated its potential utility as a thickening or gelling agent in food industry. SEM studies of the EPS showed that it had compact film-like structure, which could make it a useful in preparing plasticized films. The AFM studies showed that EPS had spike-shaped microstructure. Physical properties of the exopolysaccharide determined further indicated its possible potential in different industrial applications.

Singhania R.R, Sukumaran R.K, Rajasree K.P, Mathew A, Gottumukkala L.D, Pandey A (2011) Properties of a major ?-glucosidase-BGL1 from Aspergillus niger NII-08121 expressed differentially in response to carbon sources, Process Biochemistry 46(7): 1521-1524

Aspergillus niger NII-08121/MTCC 7956 exhibited differences in expression of ?-glucosidase (BGL) in response to carbon sources provided in the medium. Activity staining with methyl umbelliferyl ?-d-glucopyranoside (MUG) indicated that four different isoforms of BGL were expressed when A. niger was grown under submerged fermentation with either lactose or cellulose, whereas only two were expressed when wheat bran or rice straw was used as the carbon source. Among the four isoforms of BGL expressed during lactose supplementation, two were found to retain 92% and 82% activity respectively in presence of 250 mM glucose in the MUG assay. The major ?-glucosidase (BGL1) was purified to homogeneity by electro elution from a Native PAGE gel. The purified 120 kDa protein was active at 50 °C and was stable for 48 h without any loss of activity. The optimum pH and temperature were 4.8 and 70 °C respectively.

Sukumaran R.K, Gottumukkala L.D, Rajasree K.P, Alex D, Pandey A (2011) Butanol fuel from biomass: Revisiting ABE fermentation, Biofuels, Pandey A, Ricke, S, Gnansounou E, Larroche C, Dussap C-G. , Elsevier

ABE (Acetone-Butanol-Ethanol) fermentations were next only to ethanol fermentations and used to be a major industry until 1960s. Later, biological route for butanol production lost its importance owing to competition from petrochemical route, and today there is a renewed interest in ABE fermentation due to increased concerns over petroleum depletion and the increased pollution due to burning of petroleum fuels. Though the ABE fermentation process used to be operational decades back, the same technologies are not applicable today due to the lack of cost effectiveness and the nonavailability of conventional raw materials. The most feasible feedstock for butanol seems to be lignocellulose, but the problems plaguing bioethanol are also applicable for biobutanol. However, the future for biobutanol seemsbright since the Clostridia that produce ABE are capable of utilizing a range of carbon sources for growth and solvent production and also are not inhibited by the sugar degradation products generated during biomass pretreatment are being developed. Meanwhile, in the short term, advanced fermentation technologies are being developed by the expert groups which tackle problems such as low cell density, viability, and solvent sensitivity by modulations in the methods of carbon feeding, mode of culture, and in situ removal and recovery of solvents. These efforts may be developed into commercially viable technologies.

Parameswaran, B, Raveendran S, Singhania, R.R, Surender V, L Devi, Nagalakshmi S, Kurien N, Sukumaran R.K, Pandey A. (2010) Bioethanol production from rice straw: an overview, Bioresource technology 101(13): 4767-4774

Rice straw is an attractive lignocellulosic material for bioethanol production since it is one of the most abundant renewable resources. It has several characteristics, such as high cellulose and hemicelluloses content that can be readily hydrolyzed into fermentable sugars. But there occur several challenges and limitations in the process of converting rice straw to ethanol. The presence of high ash and silica content in rice straw makes it an inferior feedstock for ethanol production. One of the major challenges in developing technology for bioethanol production from rice straw is selection of an appropriate pretreatment technique. The choice of pretreatment methods plays an important role to increase the efficiency of enzymatic saccharification thereby making the whole process economically viable. The present review discusses the available technologies for bioethanol production using rice straw.

Aswathy U.S, Sukumaran R.K, Devi G.L, Rajasree K.P, Singhania R.R. (2010) Bio-ethanol from water hyacinth biomass: an evaluation of enzymatic saccharification strategy, Bioresource technology 101(3): 925-930

Biomass feedstock having less competition with food crops are desirable for bio-ethanol production and such resources may not be localized geographically. A distributed production strategy is therefore more suitable for feedstock like water hyacinth with a decentralized availability. In this study, we have demonstrated the suitability of this feedstock for production of fermentable sugars using cellulases produced on site. Testing of acid and alkali pretreatment methods indicated that alkali pretreatment was more efficient in making the sample susceptible to enzyme hydrolysis. Cellulase and ?-glucosidase loading and the effect of surfactants were studied and optimized to improve saccharification. Redesigning of enzyme blends resulted in an improvement of saccharification from 57% to 71%. A crude trial on fermentation of the enzymatic hydrolysate using the common baker’s yeast Saccharomyces cerevisiae yielded an ethanol concentration of 4.4 g/L.