• Bioprocess Development
    At Celignis Analytical

To know more about how Celignis can help you with Bioprocess Development please click here.

Publications on Bioprocess Development By The Celignis Team

Gaurang Chaudhary, Vasudeo Zambare, Rasika Pawar (2018) Screening, isolation and characterization of probiotically safe lactic acid bacteria from human faecal for biofilm formation, International Journal of Research in BioSciences 7(2): 10-18

Link

Lactic acid bacteria (LAB), one of the most important human friendly bacteria found in the digestive tract (gut), due to their secretions that inhibit the pathogenic microbes. The present study was aimed at screening of such LAB from faecal samples for various characteristics, particularly in relation to the biofilm formation. Total 110 LAB isolates were obtained from infant and adults faecal samples. All isolates showed catalase negative and inability to lyse the human red blood cells (RBCs) hence considered as safe for humans. Among all 110 isolates, 38 isolates (44.44%) showed protease secretion and all isolates showed biofilm formation abilities. Protease secretion indicated major role in protein digestion in gut, however biofilm formation showed sticking ability to gut and inhibition of pathogenic microbes. Almost more than 80% of isolates were able to tolerate conditions that mimic the gastro intestinal tract i.e. bile salt concentration and acidic environment, which qualifies them to be used as potential probiotic organism. Isolate RP-29was the only isolate showed 82% bile tolerance at 1% concentration, 58% tolerance in acidic pH 2 and 95% biofilm formation. Biofilm formation means secretion of exopolysaccharide(EPS) and was enhanced by supplementation of glucose, MgSO4, MnSO4 and tween 80 in MRS medium. Using 16S rRNA sequencing, the isolate RP-29 was identified as Pediococcusacidilactici. Based on thebile-acid tolerance and biofilm formation activities, P. acidilacticifound as a potent probiotic strain and

Haigh K.F, Petersen A.M, Gottumukkala, L, Mandegari M, Naleli, K, Gorgens J.F (2018) Simulation and comparison of processes for biobutanol production from lignocellulose via ABE fermentation, Biofuels, Bioproducts and Biorefining 12(6): 1023-1036

Six conceptual process scenarios for the production of biobutanol from lignocellulosic biomass through acetone?butanol?ethanol (ABE) fermentation, using reported data on process performances, were developed with ASPEN Plus® V8.2 software. The six scenarios covered three fermentation strategies, i.e. batch separate hydrolysis and fermentation (SHF), continuous SHF, and batch simultaneous saccharification and fermentation (SSF) integrated with gas stripping (GS). The two downstream processing options considered were double?effect distillation (DD) and liquid?liquid extraction and distillation (LLE&D). It was found that the SSF?GS/DD scenario was the most energy efficient with a liquid fuel efficiency of 24% and an overall efficiency of 31%. This was also the scenario with the best economic outcome, with an internal rate of return (IRR) of 15% and net present value (NPV) of US$387 million. The SSF?GS/DD scenario was compared to a similar molasses process, based on the product flow rates, and it was found that the molasses process was more energy efficient with a gross energy value (GEV) of 23?MJ?kg1 butanol compared to ?117?MJ?kg1 butanol for the lignocellulosic process. In addition, the molasses?based process was more profitable with an IRR of 36% compared to 21%. However, the energy requirements for the molasses process were supplied from fossil fuels, whereas for the lignocellulose processes a portion of the feedstock was diverted to provide process energy. Improved environmental performance is therefore associated with the lignocellulosic process.

Gottumukkala L.D, Haigh K, Gorgens J (2017) Trends and advances in conversion of lignocellulosic biomass to biobutanol: microbes, bioprocesses and industrial viability, Renewable and Sustainable Energy Reviews 76: 963-973

Biobutanol has gained attention as an alternative renewable transportation fuel for its superior fuel properties and widespread applications in chemical industry, primarily as a solvent. Conventional butanol fermentation has drawbacks that include strain degeneration, end-product toxicity, by-product formation, low butanol concentrations and high substrate cost. The complexity of Clostridium physiology and close control between sporulation phase and ABE fermentation has made it demanding to develop industrially potent strains. In addition to the isolation and engineering of superior butanol producing bacteria, the development of advanced cost-effective technologies for butanol production from feedstock like lignocellulosic biomass has become the primary research focus. High process costs associated with complex feedstocks, product toxicity and low product concentrations are few of the several bioprocess challenges involved in biobutanol production. The article aims to assess the challenges in lignocellulosic biomass to biobutanol conversion and identify key process improvements that can make biobutanol commercially viable.

Gottumukka L.D, Haigh K, Collard F.X, Van Rensburg E, Gorgens J (2016) Opportunities and prospects of biorefinery-based valorisation of pulp and paper sludge, Bioresource technology 215: 37-49

The paper and pulp industry is one of the major industries that generate large amount of solid waste with high moisture content. Numerous opportunities exist for valorisation of waste paper sludge, although this review focuses on primary sludge with high cellulose content. The most mature options for paper sludge valorisation are fermentation, anaerobic digestion and pyrolysis. In this review, biochemical and thermal processes are considered individually and also as integrated biorefinery. The objective of integrated biorefinery is to reduce or avoid paper sludge disposal by landfilling, water reclamation and value addition. Assessment of selected processes for biorefinery varies from a detailed analysis of a single process to high level optimisation and integration of the processes, which allow the initial assessment and comparison of technologies. This data can be used to provide key stakeholders with a roadmap of technologies that can generate economic benefits, and reduce carbon wastage and pollution load.

Boshoff A, Gottumukka L.D, Van Rensburg E, Gorgens J (2016) Paper sludge (PS) to bioethanol: Evaluation of virgin and recycle mill sludge for low enzyme, high-solids fermentationl, Bioresource technology 23: 103-111

Paper sludge (PS) from the paper and pulp industry consists primarily of cellulose and ash and has significant potential for ethanol production. Thirty-seven PS samples from 11 South African paper and pulp mills exhibited large variation in chemical composition and resulting ethanol production. Simultaneous saccharification and fermentation (SSF) of PS in fed-batch culture was investigated at high solid loadings and low enzyme dosages. Water holding capacity and viscosity of the PS influenced ethanol production at elevated solid loadings of PS. High viscosity of PS from virgin pulp mills restricted the solid loading to 18% (w/w) at an enzyme dosage of 20 FPU/gram dry PS (gdPS), whereas an optimal solid loading of 27% (w/w) was achieved with corrugated recycle mill PS at 11 FPU/gdPS. Ethanol concentration and yield of virgin pulp and corrugated recycle PS were 34.2 g/L at 66.9% and 45.5 g/L at 78.2%, respectively.

Gottumukkala L.D. Gorgens J.F (2016) Biobutanol production from lignocellulosics, Biofuels Production and future perspectives, Taylor & Francis group

Next-generation biofuels from renewable sources have gained interest among research investigators, industrialists, and governments due to major concerns on the volatility of oil prices, climate change, and depletion of oil reserves. Biobutanol has drawn signicant attention as an alternative transportation fuel due to its superior fuel properties over ethanol. e advantages of butanol are its high energy content, better blending with gasoline, less hydroscopic nature, lower volatility, direct use in convention engines, low corrosiveness, etc. Butanol production through (acetone, butanol, and ethanol) ABE fermentation is a well-established process, but it has several drawbacks like feedstock cost, strain degeneration, product toxicity, and low product concentrations. Lignocellulosic biomass is considered as the most abundant, renewable, low-cost feedstock for biofuels. Production of butanol from lignocellulosic biomass is more complicated due to the recalcitrance of feedstock and inhibitors generated during the pretreatment and hydrolysis process. Advanced fermentation and product recovery techniques are being researched to make biobutanol industrially viable.

LP Christopher; VP Zambare, AV Zambare, H. Kumar, L Malek (2015) A thermo-alkaline lipase from a new extremophile Geobacillus thermodenitrificans AV5 with potential application in biodiesel production, Journal of Chemical Technology and Biotechnology 90(11): 2007-2016

Link

BACKGROUND A thermophilic lipase?producing Geobacillus thermodenitrificans strain AV?5 was isolated from the Mushroom Spring of Yellowstone National Park in WY, USA and studied as a source of lipase for transesterification of vegetable oils to biodiesel. RESULTS A maximum activity of 330 U mL?1 was produced on 2% (v/v) waste cooking oil at 50 °C, pH 8, aeration rate of 1 vvm and agitation speed of 400 rpm. However, the higher lipase productivity (14.04 U mL?1 h?1) was found at a volumetric oxygen transfer coefficient (kLa) value of 18.48 h?1. The partially purified lipase had a molecular weight, temperature and pH optimum of 50 kDa, 65 °C and pH 9, respectively, and was thermo?alkali stable: at 70 °C, it retained 81% activity and 45% stability; at pH 10 it lost only 15% and 2.6% of its maximum activity and stability, respectively. Enzyme kinetic studies with p?nitrophenyl laurate as substrate revealed high substrate specificity (km of 0.440 mmol L?1) and kinetic activity (vmax of 556 nmol mL min?1) of lipase. CONCLUSIONS The kLa was found to be highly dependent on aeration and agitation rates. Following optimization of fermentation medium and parameters, a 7.5?fold increase in lipase production by G. thermodenitrificans was attained. The lipase activity and substrate specificity (as km) are among the highest reported in the literature for bacterial lipases. It was demonstrated that the enzyme can produce biodiesel from waste cooking oil with a conversion yields of 76%. © 2015 Society of Chemical Industry

Sajna K.P, Sukumaran R.K, Gottumukkala L.D, Pandey A (2015) Crude oil biodegradation aided by biosurfactants from Pseudozyma sp. NII 08165 or its culture broth, Bioresource technology 191: 133-139

The aim of this work was to evaluate the biosurfactants produced by the yeast Pseudozyma sp. NII 08165 for enhancing the degradation of crude oil by a model hydrocarbon degrading strain, Pseudomonas putida MTCC 1194. Pseudozyma biosurfactants were supplemented at various concentrations to the P. putida culture medium containing crude oil as sole carbon source. Supplementation of the biosurfactants enhanced the degradation of crude oil by P. putida; the maximum degradation of hydrocarbons was observed with a 2.5 mg L?1 supplementation of biosurfactants. Growth inhibition constant of the Pseudozyma biosurfactants was 11.07 mg L?1. It was interesting to note that Pseudozyma sp. NII 08165 alone could also degrade diesel and kerosene. Culture broth of Pseudozyma containing biosurfactants resulted up to ?46% improvement in degradation of C10–C24 alkanes by P. putida. The enhancement in degradation efficiency of the bacterium with the culture broth supplementation was even more pronounced than that with relatively purer biosurfactants.

Gottumukkala L.D, Sukumaran R.K. Mohan S.V. Valappil S.K. Sarkar O, Pandey A (2015) Rice straw hydrolysate to fuel and volatile fatty acid conversion by Clostridium sporogenes BE01: bio-electrochemical analysis of the electron transport mediators involved, Green chemistry 17(5): 3047-3058

Clostridium sporogenes BE01, a non-acetone forming butanol producer, can produce hydrogen and volatile fatty acids (VFAs) during butanol fermentation from rice straw hydrolysate. Bio-electrochemical analysis revealed the changes that occurred in the redox microenvironment and electron transport mediators during fermentation at different pH and CaCO3 concentrations. CaCO3 played a very important role in enhancing the production of hydrogen, volatile fatty acids and solvents by stimulating the changes in the electron transport system. The electron transport system mediated by NAD/NADH, flavins, Fe–S clusters, protein bound FAD, and cytochrome complex in C. sporogenes BE01 was analysed by cyclic voltammetry (CV). Electrokinetic analysis revealed that the favorability for redox reactions increased with an increase in pH, and the polarization resistance reduced significantly with CaCO3 supplementation.

Sajna K.V, Gottumukkala L.D, Sukumaran R.K, Pandey A. (2015) White biotechnology in cosmetics, Industrial Biorefineries & White Biotechnology, Elsevier
Thomas L, Joseph A, Gottumukkala L.D. (2014) Xylanase and cellulase systems of Clostridium sp.: an insight on molecular approaches for strain improvement, Bioresource technology 158: 343-350

Bioethanol and biobutanol hold great promise as alternative biofuels, especially for transport sector, because they can be produced from lignocellulosic agro-industrial residues. From techno-economic point of view, the bioprocess for biofuels production should involve minimal processing steps. Consolidated bioprocessing (CBP), which combines various processing steps such as pretreatment, hydrolysis and fermentation in a single bioreactor, could be of great relevance for the production of bioethanol and biobutanol or solvents (acetone, butanol, ethanol), employing clostridia. For CBP, Clostridium holds best promise because it possesses multi-enzyme system involving cellulosome and xylanosome, which comprise several enzymes such as cellulases and xylanases. The aim of this article was to review the recent developments on enzyme systems of clostridia, especially xylanase and cellulase with an effort to analyse the information available on molecular approaches for the improvement of strains with ultimate aim to improve the efficiencies of hydrolysis and fermentation.

Gottumukkala L.D, Parameswaran B, Valappil S.K, Pandey A (2014) Growth and butanol production by Clostridium sporogenes BE01 in rice straw hydrolysate: kinetics of inhibition by organic acids and the strategies for their removal, Biomass Conversion and Biorefinery 4(3): 277-283

Growth inhibition kinetics of a novel non-acetone forming butanol producer, Clostridium sporogenes BE01, was studied under varying concentrations of acetic and formic acids in rice straw hydrolysate medium. Both the organic acids were considered as inhibitors as they could inhibit the growth of the bacterium, and the inhibition constants were determined to be 1.6 and 0.76 g/L, respectively, for acetic acid and formic acid. Amberlite resins—XAD 4, XAD 7, XAD 16, and an anion exchange resin—Seralite 400 were tested for the efficient removal of these acidic inhibitors along with minimal adsorption of sugars and essential minerals present in the hydrolysate. Seralite 400 was an efficient adsorbent of acids, with minimal affinity towards minerals and sugars. Butanol production was evaluated to emphasize the effect of minerals loss and acids removal by the resins during detoxification.

Hayes, D. J. M. (2013) Report on Optimal Use of DIBANET Feedstocks and Technologies, DIBANET WP5 Report84 pages

Download

The DIBANET process chain, as a result of its patented pre-treatment stage, has significantly increased the yields of levulinic acid, formic acid, and furfural beyond what was considered to be the state of the art. By fractionating lignocellulosic biomass into its three main polymers (cellulose, hemicellulose, lignin) it has also allowed for lignin to be recovered and sold as a higher-value product. These developments have meant that the amount of acid hydrolysis residues (AHRs) that have been produced are significantly (up to 88%) less than in the Biofine process. These AHRs are required to provide process heat for DIBANET. Direct combustion is the most efficient means for doing this. If such combustion does not occur and the AHRs are instead used in other processes, e.g. pyrolysis and gasification, then more biomass will need to be purchased to fuel the core DIBANET process. The AHRs have not been proven to be superior to virgin biomass when put through these thermochemical processes. Indeed, many of the results from DIBANET Work Package 4 indicate the opposite. Hence, given that DIBANET, and the modelling of its optimal configuration, is designed on the basis of an integrated process, centred on the core element of the acid hydrolysis of biomass, then combustion is the only viable end use for the AHRs. Given that realisation, the focus of this modelling Deliverable is on what the optimal configuration of the process chain would be regarding the three core stages (pretreatment, hydrolysis, and the esterification of levulinic acid with ethanol). It has been demonstrated that a scenario incorporating only the first stage can be profitable in its own right and allow for commercial development at much lower capital costs. In this instance bagasse is a much more attractive feedstock, compared with Miscanthus, due to its higher pentose content.

Integrating the second stage increases capital costs but improves the net present value. The esterification step is somewhat capital intensive but an integrated DIBANET biorefinery that incorporates all three stages can still be highly profitable providing the furfural is sold at its current market price and the lignin is sold rather than used as a fuel for process needs. Indeed, the DIBANET process should not be considered only in the context of biofuels but as a true biorefinery that produces lower value fuels (e.g. ethyl-levulinate) in addition to high value chemicals and bio-products (e.g. furfural and lignin).

The energy and carbon balances of the various DIBANET scenarios have been investigated and are highly positive with values significantly superior to those for the energy-intensive Biofine process. A socioeconomic survey has also been carried out and has shown that there can be a positive effect on employment, both direct and indirect, particularly when Miscanthus is used as the feedstock. The DIBANET integrated process also holds up well when its environmental and social performances are ranked for a range of important parameters.

The development of the core DIBANET IP towards commercial deployment appears to be warranted, based on data provided from the models developed. Indeed, these models present possible scenarios whereby even demonstration-scale DIBANET facilities could operate at significant profits and provide healthy returns on the capital invested.

Gottumukkala, L. D, Valappi, S. K. (2013) Biobutanol production from rice straw by a non acetone producing Clostridium sporogenes BE01, Bioresource Technology 145: 182-187

Biobutanol from lignocellulosic biomass has gained much attention due to several advantages over bioethanol. Though microbial production of butanol through ABE fermentation is an established technology, the use of lignocellulosic biomass as feedstock presents several challenges. In the present study, biobutanol production from enzymatic hydrolysate of acid pretreated rice straw was evaluated using Clostridium sporogenes BE01. This strain gave a butanol yield of 3.43 g/l and a total solvent yield of 5.32 g/l in rice straw hydrolysate supplemented with calcium carbonate and yeast extract. Hydrolysate was analyzed for the level of inhibitors such as acetic acid, formic acid and furfurals which affect the growth of the organism and in turn ABE fermentation. Methods for preconditioning the hydrolysate to remove toxic end products were done so as to improve the fermentation efficiency. Conditions of ABE fermentation were fine tuned resulting in an enhanced biobutanol reaching 5.52 g/l.

Gottumukkala L.D, Parameswaran B, Valappil S.K, Mathiyazhakan, K (2013) Biobutanol production from rice straw by a non acetone producing Clostridium sporogenes BE01, Bioresource technology 145: 182-187

Biobutanol from lignocellulosic biomass has gained much attention due to several advantages over bioethanol. Though microbial production of butanol through ABE fermentation is an established technology, the use of lignocellulosic biomass as feedstock presents several challenges. In the present study, biobutanol production from enzymatic hydrolysate of acid pretreated rice straw was evaluated using Clostridium sporogenes BE01. This strain gave a butanol yield of 3.43 g/l and a total solvent yield of 5.32 g/l in rice straw hydrolysate supplemented with calcium carbonate and yeast extract. Hydrolysate was analyzed for the level of inhibitors such as acetic acid, formic acid and furfurals which affect the growth of the organism and in turn ABE fermentation. Methods for preconditioning the hydrolysate to remove toxic end products were done so as to improve the fermentation efficiency. Conditions of ABE fermentation were fine tuned resulting in an enhanced biobutanol reaching 5.52 g/l.

Sajna K.V, Sukumaran R.K, Gottumukkala L.D, Jayamurthy H, Dhar K.S (2013) Studies on structural and physical characteristics of a novel exopolysaccharide from Pseudozyma sp. NII 08165, International Journal of Biological Macromolecules 59: 84-89
V.P. Zambare, Lew P. Christopher (2012) Optimization of enzymatic hydrolysis of corn stover for improved ethanol production, Energy Exploration & Exploitation 30(2): 193-205

Link

Response surface methodology (RSM) was used to optimize the enzymatic hydrolysis of corn stover (CS), an abundant agricultural residue in the USA. A five-level, three-variable central composite design (CCD) was employed in a total of 20 experiments to model and evaluate the impact of pH (4.1–6.0), solids loadings (6.6–23.4%), and enzyme loadings (6.6?23.4 FPU g?1 DM) on glucose yield from thermo-mechanically extruded CS. The extruded CS was first hydrolyzed with the crude cellulase of Penicillium pinophilum ATCC 200401 and then fermented to ethanol with Saccharomyces cerevisiae ATCC 24860. Although all three variables had a significant impact, the enzyme loadings proved the most significant parameter for maximizing the glucose yield. A partial cubic equation could accurately model the response surface of enzymatic hydrolysis as the analysis of variance (ANOVA) showed a coefficient of determination (R2 ) of 0.82. At the optimal conditions of pH of 4.5, solids loadings of 10% and enzyme loadings of 20 FPU g?1 DM, the enzymatic hydrolysis of pretreated CS produced a glucose yield of 57.6% of the glucose maximum yield which was an increase of 10.4% over the non-optimized controls at zero-level central points. The predicted results based on the RSM regression model were in good agreement with the actual experimental values. The model can present a rapid means for estimating lignocellulose conversion yields within the selected ranges.

Vasudeo Zambare, Archana Zambare, Debmalya Barh, Lew Christopher (2012) Optimization of enzymatic hydrolysis of prairie cordgrass for improved ethanol production, Journal of Renewable and Sustainable Energy 4(3): 1-8

Link

Prairie cordgrass (PCG), Spartina pectinata, is considered an energy crop with potential for bioethanol production in North America. The focus of this study was to optimize enzymatic hydrolysis of PCG at higher solids loadings using a thermostable cellulase of a mutant Penicillium pinophilum ATCC 200401. A three variable, five-level central composite design of response surface methodology (RSM) was employed in a total of 20 experiments to model and evaluate the impact of pH (4.1–6.0), solids loadings (6.6%–23.4%), and enzyme loadings (6.6–23.4 FPU/g dry matter, DM) on glucose yield from a thermo-mechanically extruded PCG. The extruded PCG was first hydrolyzed with the crude P. pinophilum cellulase and then fermented to ethanol with Saccharomyces cerevisiae ATCC 24860. Although all three variables had a significant impact, the enzyme loadings proved the most significant parameter for maximizing the glucose yield. A partial cubic equation could accurately model the response surface of enzymatic hydrolysis as the analysis of variance showed a coefficient of determination (R2) of 0.89. At the optimal conditions of pH of 4.5, solids loadings of 10% and enzyme loadings of 20 FPU/g DM, the enzymatic hydrolysis of pretreated PCG produced a glucose yield of 76.1% from the maximum yield which represents an increase of 15% over the non-optimized controls at the zero-level central points. The predicted results based on the RSM regression model were in good agreement with the actual experimental values. The model can present a rapid means for estimating lignocellulose conversion yields within the selected ranges. Furthermore, statistical optimization of solids and enzyme loadings of enzymatic hydrolysis of biomass may have important implications for reduced capital and operating costs of ethanol production.

Axel Hollmann, Mariano Saviello, Lucrecia Delfederico, Tessália Diniz Luerce Saraiva, Debmalya Barh, Neha Jain, Sandeep Tiwari, Sudha Chandra, Krishnakant Gupta, Vasudeo Zambare, Anil Kumar, Lew Christopher, Vasco Azevedo, Liliana Semorile, Anderson Miyoshi (2012) Tight controlled expression and secretion of Lactobacillus brevis SlpA in Lactococcus lactis, Biotechnology Letters 34(7): 1275-1281

Link

Prokaryotes commonly present outer cell wall structures composed of a crystalline array of proteinaceous subunits, known as surface layers (S-layers). The ORF encoding the S-layer protein (SlpA) of Lactobacillus brevis was cloned into Lactococcus lactis under the transcriptional control of the xylose-inducible expression system (XIES). SlpA was secreted into the extracellular medium, as determined by immunoblotting, and assays on the kinetics of SlpA production revealed that repression of the system with glucose did not require the depletion of xylose from the medium that allows transitory ORF expression. The successful use of XIES to express S-layer proteins in the versatile and generally recognized as safe species L. lactis opens new possibilities for an efficient production and isolation of SlpA S-layer protein for its various applications in biotechnology and importantly as an antigen-carrying vehicle.

Din M.F.M., Ponraj M., Zaini U., Van Loosdrecht, M.C.M., Salmiati Y., Chelliapan S., Zambare V., G. Olsen (2012) Development of Bio-PORecŽ System for polyhydroxyalkanoates (PHA) production and its storage in mixed cultures of palm oil mill effluent (POME), Bioresource Technology 124: 208-216

Link

High PHA production and storage using palm oil mill effluent (POME) was investigated using a laboratory batch Bio-PORec® system under aerobic-feeding conditions. Results showed that maximum PHA was obtained at a specific rate (qp) of 0.343 C-mol/C-mol h when air was supplied at 20 ml/min. The PHA yield was found to be 0.80 C-mol/C-mol acetic acid (HAc) at microaerophilic condition and the mass balance calculation showed that PHA production increased up to 15.68 ± 2.15 C-mmol/cycle. The experiments showed that short feeding rate, limited requirements for electron acceptors (e.g. O2, NO3) and nutrients (N and P) showed lower tendency of glycogen accumulation and contributed more to PHA productivity.

V.P. Zambare, A. Bhalla, K. Muthukumarappan, R. Sani, L. Christopher (2011) Bioprocessing of agricultural residues to ethanol utilizing a cellulolytic extremophile, Extremophiles 15: 611-618

Link

A recently discovered thermophilic isolate, Geobacillus sp. R7, was shown to produce a thermostable cellulase with a high hydrolytic potential when grown on extrusion-pretreated agricultural residues such corn stover and prairie cord grass. At 70°C and 15–20% solids, the thermostable cellulase was able to partially liquefy solid biomass only after 36 h of hydrolysis time. The hydrolytic capabilities of Geobacillus sp. R7 cellulase were comparable to those of a commercial cellulase. Fermentation of the enzymatic hydrolyzates with Saccharomyces cerevisiae ATCC 24860 produced ethanol yields of 0.45–0.50 g ethanol/g glucose with more than 99% glucose utilization. It was further demonstrated that Geobacillus sp. R7 can ferment the lignocellulosic substrates to ethanol in a single step that could facilitate the development of a consolidated bioprocessing as an alternative approach for bioethanol production with outstanding potential for cost reductions.

V. P. Zambare, S. S. Nilegaonkar, P. P. Kanekar (2011) Production optimization and purification of a novel extracellular protease from Pseudomonas aeruginosa MCM B-327, New Biotechnology 28(2): 173-181

Link

The focus of this study was on production, purification and characterization of dehairing protease from Pseudomonas aeruginosa MCM B-327, isolated from vermicompost pit soil. Optimum protease activity, 395 U mL?1, was observed in the medium containing soybean meal and tryptone, at pH 7 and 30°C. The crude enzyme exhibited dehairing activity. As compared to chemical method, enzymatic method of dehairing showed reduction in COD, TDS and TSS by 34.28%, 37.32% and 51.58%, respectively. Zymogram of crude enzyme on native-PAGE presented two bands with protease activity of molecular weights of 56 and 67 kDa. Both proteases showed dehairing activity. Out of these, 56 kDa protease (PA02) was purified 3.05-folds with 2.71% recovery. The enzyme was active in pH range 7–9 and temperature 20–50°C with optimum pH of 8 and temperature 35°C. Moreover, the enzyme activity of PA02 protease was not strongly inhibited by specific inhibitor showing the novel nature of enzyme compared to serine, cysteine, aspartyl and metalloproteases. Kinetic studies indicated that substrate specificity of PA02 protease was towards various natural and synthetic proteolytic substrates but inactive against collagen and keratin. These findings suggest protease secreted by P. aeruginosa MCM B-327 may have application in dehairing for environment-friendly leather processing.

Zambare, V. P., Zambare, A. V., Muthukumarappan, K., Christopher, L. P. (2011) Potential of thermostable cellulases in the bioprocessing of switchgrass to ethanol, BioResources 6(2): 2004-2020

Link

Switchgrass (Panicum virgatum), a perennial grass native to North America, is a promising energy crop for bioethanol production. The aim of this study was to optimize the enzymatic saccharification of thermo-mechanically pretreated switchgrass using a thermostable cellulase from Geobacillus sp. in a three-level, four-variable central composite design of response surface methodology. Different combinations of solids loadings (5 to 20%), enzyme loadings (5 to 20 FPU g-1 DM), temperature (50 to 70 oC), and time (36 to 96 h) were investigated in a total of 30 experiments to model glucose release from switchgrass. All four factors had a significant impact on the cellulose conversion yields with a high coefficient of determination of 0.96. The use of higher solids loadings (20%) and temperatures (70 oC) during enzymatic hydrolysis proved beneficial for the significant reduction of hydrolysis times (2.67-times) and enzyme loadings (4-times), with important implications for reduced capital and operating costs of ethanol production. At 20% solids, the increase of temperature of enzymatic hydrolysis from 50 oC to 70 oC increased glucose concentrations by 34%. The attained maximum glucose concentration of 23.52 g L-1 translates into a glucose recovery efficiency of 46% from the theoretical yield. Following red yeast fermentation, a maximum ethanol concentration of 11 g L-1 was obtained, accounting for a high glucose to ethanol fermentation efficiency of 92%. The overall conversion efficiency of switchgrass to ethanol was 42%.

V. P. Zambare, S. S. Nilegaonkar, P. P. Kanekar (2011) Use of agroresidues for protease production and application in degelatinazation, Research Journal of BioTechnology 6(2): 62-65
Vasudeo Zambare, Archana Zambare, Kasiviswanathan Muthukumarappan, Lew Christopher (2011) Biochemical characterization of thermophilic lignocellulose degrading enzymes and their potential for biomass bioprocessing, International Journal of Energy and Environment 2(1): 99-112

Link

A thermophilic microbial consortium (TMC) producing hydrolytic (cellulolytic and xylanolytic) enzymes was isolated from yard waste compost following enrichment with carboxymethyl cellulose and birchwood xylan. When grown on 5% lignocellulosic substrates (corn stover and prairie cord grass) at 600 C, the thermophilic consortium produced more xylanase (up to 489 U/l on corn stover) than cellulase activity (up to 367 U/l on prairie cord grass). Except for the carboxymethyl cellulose-enriched consortium, thermo-mechanical extrusion pretreatment of these substrates had a positive effect on both activities with up to 13% and 21% increase in the xylanase and cellulase production, respectively. The optimum temperatures of the crude cellulase and xylanase were 600 C and 700 C with half-lives of 15 h and 18 h, respectively, suggesting higher thermostability for the TMC xylanase. Sodium dodecyl sulfatepolyacrylamide gel electrophoresis of the crude enzyme exhibited protein bands of 25-77 kDa with multiple enzyme activities containing 3 cellulases and 3 xylanases. The substrate specificity declined in the following descending order: avicel>birchwood xylan>microcrystalline cellulose>filter paper>pine wood saw dust>carboxymethyl cellulose. The crude enzyme was 77% more active on insoluble than soluble cellulose. The Km and Vmax values were 36.49 mg/ml and 2.98 U/mg protein on avicel (cellulase), and 22.25 mg/ml and 2.09 U/mg protein, on birchwood xylan (xylanase). A total of 50 TMC isolates were screened for cellulase and xylanase secretion on agar plates. All single isolates showed significantly lower enzyme activities when compared to the thermophilic consortia. This is indicative of the strong synergistic interactions that exist within the thermophilic microbial consortium and enhance its hydrolytic capabilities. It was further demonstrated that the thermostable enzyme-generated lignocellulosic hydrolyzates can be fermented to bioethanol by a recombinant strain of Escherichia coli. This could have important implications in the enzymatic breakdown of lignocellulosic biomass for the establishment of a robust and cost-efficient process for production of cellulosic ethanol. To the best of our knowledge, this work represents the first report in literature on biochemical characterization of lignocellulose-degrading enzymes from a thermophilic microbial consortium.

Vasudeo Zambare (2011) Optimization of amylase production from Bacillus sp. using statistics based experimental design, Emirates Journal of Food and Agriculture 23(1): 37-47

Production of amylase under submerged fermentation Bacillus sp. was investigated using wheat bran, soybean meal and CaCO3 (WSC) medium. Response surface methodology (RSM) was used to evaluate the effect of the main variables, i.e., pH (11.35), temperature (35.16°C) and inoculum size (2.95%) on amylase production by applying a full factorial central composite design (CCD). The mutual interaction between these variables resulted into 4.64 fold increase in amylase activity as compared to the non-optimized environmental factors in the basal medium.

V.P. Zambare, Lew P. Christopher (2011) Statistical analysis of cellulase production in Bacillus amyloliquefaciens UNPDV-22, Extreme Life, Biospeology & Astrobiology 3(1): 38-45

Link

The production of cellulase in Bacillus amyloliquefaciens UNPDV-22 was optimized using response surface methodology (RSM). Central composite design (CCD) was used to study the interactive effect of fermentation medium components (wheat bran, soybean meal, and malt dextrin) on cellulase activity. Results suggested that wheat bran, soybean meal, and malt dextrin all have significant impact on cellulase production. The use of RSM resulted in a 70% increase in the cellulase activity over the control of non-optimized basal medium. Optimum cellulase production of 11.23 U/mL was obtained in a fermentation medium containing wheat bran (1.03%, w/v), soybean meal (2.43%, w/v), and malt dextrin (2.95%, w/v).

V.P. Zambare, Lew P. Christopher (2011) Optimization of culture conditions for cellulase production from thermophilic Bacillus strain, Journal of Chemistry and Chemical Engineering 5(7): 521-527

Link

The production of cellulase in Bacillus amyloliquefaciens UNPDV-22 was optimized using response surface methodology (RSM). Central composite design (CCD) was used to study the interactive effect of culture conditions (temperature, pH, and inoculum) on cellulase activity. Results suggested that temperature and pH all have significant impact on cellulase production. The use of RSM resulted in a 96% increase in the cellulase activity over the control of non-optimized basal medium. Optimum cellulase production of 13 U/mL was obtained at a temperature of 42.24 °C, pH of 5.25, and inoculum size of 4.95% (v/v) in a fermentation medium containing wheat bran, soybean meal and malt dextrin as major nutritional factors.

Singhania R.R, Sukumaran R.K, Rajasree K.P, Mathew A, Gottumukkala L.D, Pandey A (2011) Properties of a major ?-glucosidase-BGL1 from Aspergillus niger NII-08121 expressed differentially in response to carbon sources, Process Biochemistry 46(7): 1521-1524

Aspergillus niger NII-08121/MTCC 7956 exhibited differences in expression of ?-glucosidase (BGL) in response to carbon sources provided in the medium. Activity staining with methyl umbelliferyl ?-d-glucopyranoside (MUG) indicated that four different isoforms of BGL were expressed when A. niger was grown under submerged fermentation with either lactose or cellulose, whereas only two were expressed when wheat bran or rice straw was used as the carbon source. Among the four isoforms of BGL expressed during lactose supplementation, two were found to retain 92% and 82% activity respectively in presence of 250 mM glucose in the MUG assay. The major ?-glucosidase (BGL1) was purified to homogeneity by electro elution from a Native PAGE gel. The purified 120 kDa protein was active at 50 °C and was stable for 48 h without any loss of activity. The optimum pH and temperature were 4.8 and 70 °C respectively.

Sukumaran R.K, Gottumukkala L.D, Rajasree K.P, Alex D, Pandey A (2011) Butanol fuel from biomass: Revisiting ABE fermentation, Biofuels, Elsevier

ABE (Acetone-Butanol-Ethanol) fermentations were next only to ethanol fermentations and used to be a major industry until 1960s. Later, biological route for butanol production lost its importance owing to competition from petrochemical route, and today there is a renewed interest in ABE fermentation due to increased concerns over petroleum depletion and the increased pollution due to burning of petroleum fuels. Though the ABE fermentation process used to be operational decades back, the same technologies are not applicable today due to the lack of cost effectiveness and the nonavailability of conventional raw materials. The most feasible feedstock for butanol seems to be lignocellulose, but the problems plaguing bioethanol are also applicable for biobutanol. However, the future for biobutanol seemsbright since the Clostridia that produce ABE are capable of utilizing a range of carbon sources for growth and solvent production and also are not inhibited by the sugar degradation products generated during biomass pretreatment are being developed. Meanwhile, in the short term, advanced fermentation technologies are being developed by the expert groups which tackle problems such as low cell density, viability, and solvent sensitivity by modulations in the methods of carbon feeding, mode of culture, and in situ removal and recovery of solvents. These efforts may be developed into commercially viable technologies.

V. P. Zambare (2010) Solid state fermentation production of cellulase from Bacillus sp, International Journal of BioScience, Agriculture and Technology 2(1): 1-6

Link

Bacillus sp. was cultured in solid-state fermentation (SSF) of wheat straw to produce cellulase. The fermented biomass was harvested after 36 h of SSF at pH 8 and temperature 400C. It was filtered and centrifuged at 10,000 rpm at 4 0C and supernatant was collected as crude enzyme extract. Maximum activity of cellulase (3.775±0.13U/ml) was obtained after fermentation of wheat straw (10g) medium containing 0.2g soybean meal, 0.04g corn steep liquor (CSL), 80% moisture content (mineral salt medium, pH 8), 2-mL inoculum, and temperature 40 0C. SSF was found to be more productive than submerged fermentation (SmF) in terms of cellulase yields. The partial purification of cellulase was carried out through (NH4)2SO4 precipitation. The partially purified enzyme produced under SSF had molecular weight of 35 and 45kDa. It was active in a broad pH (4-10) and temperature range (25-550C). The optimum, pH and temperature of Bacillus cellulase were pH 5 and 450C, respectively. At 500C and 600C, the half lives of the partially purified cellulase were 194 and 163 min, respectively. All the results indicated that the Bacillus sp. had a promising application of treatment of agro-wastes and cellulase from Bacillus sp. could be potentially used in biofuel industries.

Vasudeo Zambare (2010) Solid state fermentation of Aspergillus oryzae for glucoamylase production on agro residues, International Journal of Life Sciences 4: 16-25

Link

Glucoamylase is a well recognized amylolytic enzyme used in food industry, which is generally produced by Aspergillus genus under solid-state fermentation (SSF). This study presents production of glucoamylase by Aspergillus oryzae on the solid surface of rice husk, wheat bran, rice bran, cotton seed powder, corn steep solids, bagasse powder, coconut oil cake, and groundnut oil cake as substrates. Optimization of the SSF media and parameters resulted in a 24% increase in the glucoamylase activity. Optimum glucoamylase production (1986 µmoles of glucose produced per minute per gram of dry fermented substrate) was observed on wheat bran supplemented with 1%, (w/w) starch, 0.25%, (w/w) urea at pH 6, 100%, (v/w) initial moisture and 300C after incubation 120 hrs. Therefore, A. oryzae can be useful in bioprocessing application for saccharification of agro-residues.

V. P. Zambare (2010) Optimization of nutritional parameters for extracellular protease production from Bacillus sp. using response surface resistance, International Journal of BioEngineering and Technology 1(1): 43-47

Link

The optimization of nutritional parameters and concentrations for the protease production by Bacillus sp. in submerged fermentation was carried out using response surface methodology (RSM) based on the central composite design (CCD). The design contains a total of 20 experimental trials containing starch, soybean meal and CaCO3 as model factors. The mutual interaction between these variables resulted into 1.48 fold increase in protease activity as compared to the mean observed response at zero level of all variables.

V. P. Zambare, Lew P. Christopher (2010) Solid state fermentation and characterization of a cellulase enzyme system from Aspergillus niger SB-2, International Journal of Biological Sciences and Technology 2(3): 22-29

Link

The focus of this study was on the solid state fermentation (SSF) of cellulase enzymes produced by Aspergillus niger SB-2 utilizing lignocellulosic agricultural waste as carbon and energy source. Optimization of the SSF media and parameters resulted in a 32% increase in the cellulase activity. Maximum enzyme production of 1,325±7.1 IU/g dry fermented substrate was observed on wheat bran and rice bran supplemented with malt dextrin and soybean meal at pH 6 and 300C after incubation for 120 h. The cellulase activities presented here appear to be among the highest reported in literature for A. niger to date. The A. niger SB-2 cellulase was partially purified and characterized. Zymogram analysis of the sodium dodecyl sulphate-polyacrylamide gel electrophoresis revealed two bands of cellulase activity with molecular weights of 30 and 45 kDa. To the best of our knowledge, a 45 kDa cellulase from A. niger has not been previously described in literature. The enzyme was active in a broad pH (4-7) and temperature (30-550C) range with a pH optimum of 6 and a temperature optimum of 450C. At 50 and 600C, the cellulase half life was 12.4 and 4.1 h, respectively. Dithiothreitol, iodoacetamide and Mg+2 acted as activators of cellulase activity. Kinetics studies indicated that the substrate specificity of A. niger SB-2 cellulase was 18% higher on insoluble cellulose than on soluble cellulose. Therefore, the cellulase complex of A. niger SB-2 would be useful in bioprocessing applications where efficient saccharification of lignocellulosic biomass is required.

Vasudeo Zambare, Archana Zambare, Lew Christopher (2010) Antioxidant and antibacterial activity of extracts from lichen Xanthoparmelia somloensis, native to the Black Hills, South Dakota, USA, International Journal Medical Science and Technology 3(7): 46-51

Link

The present study was carried out to evaluate the antioxidant and antibacterial activity of lichen Xanthoparmelia somloensis, native to the Black Hills in South Dakota, USA. The antioxidant activity of lichen extracts was assessed using the 1,1-diphenyl-2-picrylhydrazyl free radical scavenging assay. The lipid peroxidation reaction of acetone and methanol extracts was inhibited 85% and 81%, respectively A free radical scavenging activity of 77% (acetone extract) and 65% (methanol extract) was determined. The antibacterial activity was assayed against four clinical strains using the agar well diffusion method. Except for Escherichia coli, both extracts were found inhibitory to Streptomyces aureus, Streptococcus pyogenes,and Steptococcus agalactiae with minimum inhibitory concentration values of 0.7-0.9 mg/ml. It was demonstrated that both the antioxidant and antibacterial activities correlated well with the protein to polysaccharide ratio rather than the polyphenol content of the lichen extracts. To the best of our knowledge, this is the first literature report on antibacterial activity from the lichen X.somloensis. The results reported here warrant further investigations to establish the usefulness of X.somloensis in biomedical applications such as treatment of respiratory and urinary tract infections.

Parameswaran, B, Raveendran S, Singhania, R.R, Surender V, L Devi, Nagalakshmi S, Kurien N, Sukumaran R.K, Pandey A. (2010) Bioethanol production from rice straw: an overview, Bioresource technology 101(13): 4767-4774

Rice straw is an attractive lignocellulosic material for bioethanol production since it is one of the most abundant renewable resources. It has several characteristics, such as high cellulose and hemicelluloses content that can be readily hydrolyzed into fermentable sugars. But there occur several challenges and limitations in the process of converting rice straw to ethanol. The presence of high ash and silica content in rice straw makes it an inferior feedstock for ethanol production. One of the major challenges in developing technology for bioethanol production from rice straw is selection of an appropriate pretreatment technique. The choice of pretreatment methods plays an important role to increase the efficiency of enzymatic saccharification thereby making the whole process economically viable. The present review discusses the available technologies for bioethanol production using rice straw.

Aswathy U.S, Sukumaran R.K, Devi G.L, Rajasree K.P, Singhania R.R. (2010) Bio-ethanol from water hyacinth biomass: an evaluation of enzymatic saccharification strategy, Bioresource technology 101(3): 925-930

Biomass feedstock having less competition with food crops are desirable for bio-ethanol production and such resources may not be localized geographically. A distributed production strategy is therefore more suitable for feedstock like water hyacinth with a decentralized availability. In this study, we have demonstrated the suitability of this feedstock for production of fermentable sugars using cellulases produced on site. Testing of acid and alkali pretreatment methods indicated that alkali pretreatment was more efficient in making the sample susceptible to enzyme hydrolysis. Cellulase and ?-glucosidase loading and the effect of surfactants were studied and optimized to improve saccharification. Redesigning of enzyme blends resulted in an improvement of saccharification from 57% to 71%. A crude trial on fermentation of the enzymatic hydrolysate using the common baker’s yeast Saccharomyces cerevisiae yielded an ethanol concentration of 4.4 g/L.

Rasika Pawar, Vasudeo Zambare, Siddhivinayak Barve, Govind Paratkar (2009) Application of protease isolated from Bacillus sp.-158 in enzymatic cleaning of contact lenses, Biotechnology 8(2): 276-280

Link

A neutral protease, isolated from Bacillus sp. 158 was used for removing protein deposits from contact lenses. Partial purification of the protease was carried out using ammonium sulphate and factors affecting the enzyme activity, such as assay temperature and assay pH were characterized. The optimum pH and temperature for protease were found to be pH 7.0 and 30°C, respectively. The partially purified protease was stable at temperature range of 30-40°C and pH 6-7. However, protease was maximum stable at 30°C and pH 7.0. The enzyme could be effectively used to remove protein deposit from contact lenses indicating its potential to increase in transmittance of lenses.

Zambare V. P, Bhoyte S. A. (2009) Antibacterial activity of tea, Biomedical and Pharmacology Journal 2(1): 173-175

Link

Antibacterial activities of tea extracts in various solvents were tested against six organisms, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Serracia sp., and Bacillus subtilis using agar-well method. Petroleum ether and chloroform extracts of tea showed strong antibacterial activities against P. aeruginosa and B. subtilis while other extracts were less active. The minimum inhibitory concentration (MIC) of chloroform extract of tea was found to be 25µg/mL. This study may establish the need for daily use of this product for medicinal purposes.

M. V. Padul and V. P. Zambare (2008) In vitro antibacterial activity of Enicostema littorale plant extracts, Journal of Pure and Applied Microbiology 2(1): 245-247

Link

The antibacterial activity of aqueous, ethanolic, methanolic, ether, acetone, chloroform and hexane extracts from Enicostema littorale plant has been evaluated, in vitro, against Serrasia sp:, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. All extracts of Enicostema littorale exhibited highest antibacterial activity against Sarrasia sp and P. aeruginosa followed by very less activity against E. coli and S. aureus. The results indicate that Enicostema littorale plant may be a good candidate as antimicrobial agent.

V. P. Zambare and A. A. Bhole (2008) In vitro antioxidant activity of Plumbago zeylanica, Research Journal of BioTechnology 3(3): 36-37

Link

The total antioxidant activity, total phenolic content and reducing power of ethanol, methanol and water extracts of roots of plant Plumbago zeylanica were determined in vitro. Ethanol, methanol and water extracts of P. zeylanica roots showed the good antioxidant activity. However, there was no correlation between antioxidant activity and total phenolic content of the extracts. Although the methanol extract of P. zeylanica had the highest total phenolic contents, it exhibited low antioxidant activity. In contrast, there was a strong correlation between reducing power and total antioxidant activity of the extracts. The highest reducing power was determined for the methanol extract of Plumbago zeylanica.

Zambare V. P. , M. V. Padul, Yadav A. A, Shete T. B. (2008) Vermiwash: biochemical and microbiological approach as eco-friendly soil conditioner, ARPN Journal of Agricultural and Biological Sciences 3(4): 1-5

Link

Vermiwash was found to contain enzyme cocktail of proteases, amylases, urease and phosphatase. Microbiological study of vermiwash revealed that it contains nitrogen-fixing bacteria like Azotobactrer sp., Agrobacterium sp. and Rhizobium sp. and some phosphate solublizing bacteria. Laboratory scale trial showed effectiveness of vermiwash on Cowpea plant growth

Zambare V.P. and Bhoyte S. A (2008) Antibacterial activity of ginger (Zingiber officinalis), Journal of Pure and Applied Microbiology 2(2): 591-593

Link

Vasudeo Zambare (2008) Biotechnological applications of proteases in leather processing: a green technology, Proceedings of National Conference on Green Technology (NCGT-2008), Government Polytechnic
S. S. Nilegaonkar, V. P. Zambare, P. P. Kanekar, P. K. Dhakephalkar and S. S. Sarnaik (2007) Production and partial characterization of dehairing protease from Bacillus cereus MCM B-326, Bioresource Technology 98(6): 1238-1245

Link

Bacillus cereus MCM B-326, isolated from buffalo hide, produced an extracellular protease. Maximum protease production occurred (126.87+/-1.32 U ml(-1)) in starch soybean meal medium of pH 9.0, at 30 degrees C, under shake culture condition, with 2.8 x 10(8) cells ml(-1) as initial inoculum density, at 36 h. Ammonium sulphate precipitate of the enzyme was stable over a temperature range of 25-65 degrees C and pH 6-12, with maximum activity at 55 degrees C and pH 9.0. The enzyme required Ca(2+) ions for its production but not for activity and/or stability. The partially purified enzyme exhibited multiple proteases of molecular weight 45 kDa and 36 kDa. The enzyme could be effectively used to remove hair from buffalo hide indicating its potential in leather processing industry

V. P. ZambareS. S. NilegaonkarP. P. Kanekar (2007) Production of an alkaline protease by Bacillus cereus MCM B-326 and its application as a dehairing agent, World Journal of Microbiology and Biotechnology 23(11): 1569–1574

Link

The present investigation describes microbial production of an alkaline protease and its use in dehairing of buffalo hide. Bacillus cereus produced extracellular protease when grown on a medium containing starch, wheat bran and soya flour (SWS). The ammonium sulphate precipitated (ASP) enzyme was applied for dehairing of buffalo hide. Microscopic observation of longitudinal section of buffalo hide revealed that the epidermis was completely removed and hair was uprooted leaving empty follicles in the hide. The ASP enzyme was stable for one month at ambient temperature between 25–35 °C. Enzymatic dehairing may be a promising shift towards an environment-friendly leather processing method.

V. P. Zambare, P. S. Kothari, M. V. Kulkarni (2007) Plasmid curing of plumbagin and its application in bacterial antibiotic resistance, Journal of Pure and Applied Microbiology 1(2): 285-288

Link

Plumbago zeylanica, a medicinal plant, contain plumbagin a naphthoquinonic compound. Partially purified plumbagin was tested for its plasmid curing activity. E. coli, isolated from pathological samples showed multiple antibiotic resistance. Plumbagin showed antibacterial activity at MIC value; 80 ?g ml -1. Antibiotics and plumbagin together decreased the antibiotic resistance pattern, suggesting plasmid curing by plumbagin. Thus, plumbagin can be used as an adjuvant to antibiotic therapy for treating infectious diseases caused by antibiotic resistant organisms.

S. S. Nilegaonkar, V. P. Zambare, P. P. Kanekar, P. K. Dhakephalkar, S. S. Sarnaik, N. K. Chandrababu, Rama Rajaram, B. Ramanaiah, T. Ramasami, Y. K. Saikumari and P. Balaram (2007) A novel protease for industrial application, German Patent Patent NO. 102007013950.2

The present invention relates to an extracellular enzyme protease obtained by growing the culture of Pseudomonas aeruginosa MCM B-327 isolated from vermiculture pit soil and deposited in MTCC, IMTECH, Chandigarh with designation MTCC 5270, in production medium of pH 7.0; containing soybean meal and tryptone as raw materials, at 30° C. for 72 h. The organism was also able to produce protease using different agricultural products/byproducts as protein sources. The partially purified non-collagenolytic, calcium independent protease with molecular weight 60 kDa has activity in pH range of 6.0-11.0 and temperature range of 25-65° C.; stability in pH range of 6.0-10.0 and temperature 25-45° C. The protease activity was retained for 8 months when stored at ambient temperature. Ammonium sulphate precipitated enzyme was able to completely dehair animal skins and hides without chemicals like lime, sodium sulphide and calcium.

S. S. Nilegaonkar, V. P. Zambare, P. P. Kanekar, P. K. Dhakephalkar, S. S. Sarnaik, N. K. Chandrababu, Rama Rajaram, B. Ramanaiah, T. Ramasami, Y. K. Saikumari and P. Balaram (2007) A novel protease for industrial application, US Patent Patent No US20080220499A1

Link

The present invention relates to an extracellular enzyme protease obtained by growing the culture of Pseudomonas aeruginosa MCM B-327 isolated from vermiculture pit soil and deposited in MTCC, IMTECH, Chandigarh with designation MTCC 5270, in production medium of pH 7.0; containing soybean meal and tryptone as raw materials, at 30° C. for 72 h. The organism was also able to produce protease using different agricultural products/byproducts as protein sources. The partially purified non-collagenolytic, calcium independent protease with molecular weight 60 kDa has activity in pH range of 6.0-11.0 and temperature range of 25-65° C.; stability in pH range of 6.0-10.0 and temperature 25-45° C. The protease activity was retained for 8 months when stored at ambient temperature. Ammonium sulphate precipitated enzyme was able to completely dehair animal skins and hides without chemicals like lime, sodium sulphide and calcium.

S. S. Nilegaonkar, V. P. Zambare, P. P. Kanekar, P. K. Dhakephalkar, S. S. Sarnaik, N. K. Chandrababu, Rama Rajaram, B. Ramanaiah, T. Ramasami, Y. K. Saikumari and P. Balaram (2006) A novel protease for industrial application, Indian Patent Patent NO. 2471DEL2006

The present invention relates to an extracellular enzyme protease obtained by growing the culture of Pseudomonas aeruginosa MCM B-327 isolated from vermiculture pit soil and deposited in MTCC, IMTECH, Chandigarh with designation MTCC 5270, in production medium of pH 7.0; containing soybean meal and tryptone as raw materials, at 30° C. for 72 h. The organism was also able to produce protease using different agricultural products/byproducts as protein sources. The partially purified non-collagenolytic, calcium independent protease with molecular weight 60 kDa has activity in pH range of 6.0-11.0 and temperature range of 25-65° C.; stability in pH range of 6.0-10.0 and temperature 25-45° C. The protease activity was retained for 8 months when stored at ambient temperature. Ammonium sulphate precipitated enzyme was able to completely dehair animal skins and hides without chemicals like lime, sodium sulphide and calcium.



...