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Abstract

This study presents a method for effective pectin extraction from the laminae of three tobacco varieties as a means of biomass
valorisation. Two pre-treatment methods (cold ethanol vs. accelerated solvent extraction [ASE] with ethanol) were compared
for their capacities to produce a high pectin yield. Enzymatic extraction of pectin was also tested as a green extraction pro-
cedure and compared to the acid extraction approach. The optimisation experiments revealed that cold ethanol extraction
followed by acid hydrolysis is the most convenient method for pectin extraction; the optimal set of conditions for hydrolysis
were identified as 90°C, pH 1.5, and 4 h of extraction. Applying these optimised conditions to the three Nicotiana rustica
tobacco varieties yielded pectin recoveries of 66.2%, 57.8%, and 56.7% from the NRT63, Bakoum Miena, and NRT61 sam-
ples, respectively. Tobacco pectins were found to have a medium molecular weight and low methoxy content. These results
highlight the potential of tobacco residues as feedstock for to produce pectin with dietary applications.

Keywords Tobacco lamina - Pectin - Acid hydrolysis - Enzymatic hydrolysis - Galacturonic acid

1 Introduction

Tobacco is a globally significant crop, with annual produc-
tion ranging between 5.9 and 7.6 million tonnes over the
last 30 years (https://www.statista.com/statistics/261189/
global-tobacco-production-since-1980/, last accessed at
11:45 (CET) on Monday 5t September 2022). Tobacco cul-
tivation occupies ~4.3 million hectares of agricultural land
spread across 124 countries [1]. Of these, China and Brazil
jointly contribute the majority with total production of ~3.8
million tonnes per year [2]. Considering that only 75% of
the plant is utilised, tobacco residues generated globally may
amount to at least 1.4 million tonnes [2]. The conventional
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means of disposal of these residues, such as incineration
and landfill, result in significant environmental issues such
as soil structural changes and groundwater contamination.
Additionally, these practices do not generate any economic
value from the residues [1, 3]. It would be advantageous—in
both environmental and economic terms—if these residues
could be used as feedstocks to produce high-value commodi-
ties and fuels.

Conveniently, the large quantities of tobacco residues
produced allow for the development of practical and eco-
nomical logistical operations and technical processes for the
valorisation of this feedstock. Its potential for valorisation
results from the myriad of high value compounds found in
this feedstock, including alkaloids, diterpenoids, flavonoids,
proteins, polyphenols, pectins, and sugars [1, 4-6]. Among
these substances, pectin is of particular importance due to its
broad-reaching applications in the food and pharmaceutical
industries. Pectin is largely used as a gelling and thickening
agent in jams and confectionary products [7]. The diversity
in pectin structures may result in the polysaccharide exhib-
iting unique properties ranging from emulsification, anti-
oxidant, prebiotic, antimicrobial, and anticancer depending
on the modification and structural properties of the native
pectin [2, 8—11]. Recently, pectin was found to be suitable
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for application in the manufacture of bio-based, sustainable
films and coatings for food packaging [12].

Pectin is one of the major polysaccharides of the plant
cell wall (together with cellulose and hemicellulose) and is
a heteropolysaccharide consisting of a-(1-4)-linked galac-
turonic acid (GalA) and (1-2)-linked rhamnose units con-
nected to either -a-(1-5)-linked L-arabinose or (1-4)-linked
B-D-galactose side chains. Occasionally, several of the C-6
carboxyl units of the GalA backbone are esterified with
methoxyl groups or exist as uronic acids [13]. Due to its
association with the plant cell wall, pectin extractabil-
ity depends on the cell wall matrix composition. Numer-
ous methods have been devised to selectively liberate the
pectin from the plant tissue, including hot acid treatment,
microwave-assisted extraction, ultrasound-assisted extrac-
tion, enzymatic extraction, extraction with chelating agents,
and alkaline treatment [2, 14—16]. The microwave and ultra-
sound-assisted methods have only been applied on the labo-
ratory scale and may be technologically challenging to scale
up. Extraction with chelating agents presents the challenge
of eliminating the chelators after the extraction process,
while alkaline extraction decreases the degree of methyla-
tion and length of the GalA chain by f-elimination [16].

Hot acid extraction is generally applied in commercial
pectin production, as this method produces the highest yield
and can conveniently be scaled up [7, 17-20]. Furthermore,
the use of hydrochloric (HCl) acid is recommended in many
reports [19, 21, 22]. The enzymatic treatment method is
encouraged as it is more environmentally friendly, since the
generation of hazardous waste materials associated with
acid treatment is significantly reduced or avoided. Care-
ful enzyme selection may result in high pectin yields per
amount of solvent/chemical needed [14, 23]. Pectin has
therefore been extracted using enzymes from different raw
materials under various conditions, depending on the nature
of the feedstock and the process economics [24].

The efficient extraction of pectin from tobacco samples
requires a rigorous approach that considers the following:
(I) the tobacco sample contains a slightly lower pectin con-
tent compared to pre-existing commercial sources (citrus
peels and apple pomace), (I) the high amount of extrac-
tives and bioactive components present the tobacco biomass
may interfere with pectin extraction, and (III) the tobacco
biomass is generally highly recalcitrant compared to alter-
native pectin sources [5, 25-28]. To this end, it is crucial
to implement a pre-treatment step aimed at pre-extracting
a majority of the extractives prior to the pectin extraction
step. Amongst the several polar and nonpolar solvent sys-
tems applied to the recovery of extractives from the tobacco
biomass, ethanol systems have been identified as a proficient
solvent for the selective recovery of extractives and bioac-
tive components such as nicotine, rutin, sclareol, limonene,
linoleic acid, phytol, farnesol, and a-pinene [27, 29-31].
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In a biorefinery concept, the recovered extractives from the
pre-treatment step can be further valourized for additional
revenue generation.

The global market for pectin is estimated at 319 mil-
lion USD corresponding to a production of 40,000 tonnes
per year with a reported average annual growth rate of 6%
[32]. The majority of the commercial pectin is obtained
from apple and citrus peels, and there is need to identify
and develop pectin extraction processes from other types of
feedstocks. This work explores the potential of developing
a scalable process for an efficient and sustainable produc-
tion of pectin from tobacco residues. The laminae of three
tobacco varieties were studied, including detailed composi-
tional analyses of these samples. A multi-stage pretreatment-
hydrolysis process was then developed to maximise pectin
recovery from these feedstocks. In this process, the biomass
is pretreated to remove extractives and bioactive components
before the subsequent hydrolysis step to extract the pectin.
The extracted pectins were also characterised in terms of
degree of esterification (DE), composition, and molecular
weight (MW) to provide insight into their potential applica-
tions. The results provide a significant knowledge base to
build a foundation for stakeholders and decision makers to
consider the potential of tobacco residue as a source of com-
mercial pectin production [33].

2 Materials and methods
2.1 Materials

Dried samples of the laminae (leaves) of three Nicotiana rus-
tica tobacco varieties (Bakoum Miena, NRT63, and NRT61)
were cultivated in 2021 in Italy following common agricul-
tural practices (Table 1), as provided by Philip Morris Inter-
national (Italy/Switzerland). These samples were milled using
a rotor beater mill SR 300 (Retsch GmbH, Haan, Germany) to
a particle size <200 pm. The milled samples were then stored
at room temperature until they were utilised.

2.2 Characterization of raw materials and pectin
extracts

2.2.1 Moisture and ash contents

The moisture contents of samples were determined accord-
ing to the weight losses recorded when samples were dried
overnight in a convection oven at 105°C. As described
by NREL [34], the ash content of samples was deter-
mined by incineration using a L-240H1SN muffle furnace
(Nabertherm, Lilienthal, Germany) operated with a ramp-
ing temperature program. Complete biomass incineration is
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achieved when a furnace temperature of 575°C is reached
and maintained for 3 h.

2.2.2 Extractive contents

The determination of extractive contents of the tobacco bio-
mass was carried out using an Accelerated Solvent Extractor
(ASE) 200 unit (Dionex Corp., Sunnyvale, CA, USA). The
extraction was initially carried out separately with 95% etha-
nol (EE) and deionised (DEI) water (WE) as solvents. This
step was followed by a sequential extraction (SE) using DEI
water and 95% ethanol in that order. The ASE 200 unit was
operated using the NREL standard protocol for automated
extraction [35]. Samples were placed in 11-mL ASE cells
and pressured to 1500 PSI using analytical grade nitrogen
gas, maintained at 100°C. The heating time was 5 min, while
the static time was 7 min. The samples were taken through
three static cycles with a total flush volume of 150% of
extraction cell volume. The extraction solvent (containing
the extractives) was collected into a vial corresponding to
the extraction cell.

2.2.3 Lignocellulosic sugars and lignin

The constituent sugars of lignocellulose (glucose, xylose,
mannose, galactose, arabinose, and rhamnose) and lignin in
the raw material and pectin extract samples were obtained
and separated following a procedure based on the NREL
protocol [36]. The first step involved a two-stage acid hydrol-
ysis, where the sample was treated with 72% H,SO, fol-
lowed by the addition of water and subsequent autoclaving.
The resulting mixture was filtered to separate the hydrolysate
from the acid-insoluble residue (AIR), with the AIR content
determined gravimetrically. The difference between the AIR
and its ash content constitutes the Klason lignin. The acid-
soluble lignin (ASL) was calculated from the absorbance
(at 205 nm) of aliquots of the hydrolysate measured with an
8452 UV-Visible spectrophotometer (Agilent Technologies,
Santa Clara, CA, USA) as described previously [37-39].

Quantification of sugars liberated in the hydrolysis step
was undertaken using a Dionex ICS-3000 chromatography
system as described previously [40]. The samples were first
diluted with a melibiose (used as an internal standard) solu-
tion of known concentration followed by filtration of sam-
ples using 0.2-pm syringe filters into vials for analysis on
the chromatography system.

The Dionex ICS-3000 chromatography system comprised
(D an electrochemical detector (using Pulsed Amperometric
Detection, PAD), (IT) a gradient pump, (II) a temperature-
controlled column (with detector), and (IV) an autosam-
pler. The autosampler injected 10 pL of the sample, and
sugar separation was achieved using Dionex Carbo-Pac
PA1 guard and analytical columns connected in sequence.

@ Springer

Sugar separation occurred within 30 min using deionized
water as the eluent (flow rate of 1 mL/min, and a column/
detector temperature of 18°C). The column was regenerated
after each run using a 300 mM NaOH aqueous solution and
then re-equilibrated with water prior to the next injection.
PAD requires alkaline conditions for the analysis of carbo-
hydrates. To achieve this, NaOH (300 mM concentration)
was injected with a Dionex pump (flow rate of 0.3 mL/min)
to the eluent stream (post-column). The chromatographic
settings allowed for resolution between and quantification of
arabinose, galactose, thamnose, glucose, xylose, mannose,
and melibiose in a single injection. Relative response factors
were identified via sugar standard samples injected at fixed
times in the analytical order. Sugar losses associated with the
autoclaving processes were accounted for by putting sugar
standards through the same process and using the recovery
rates as correction factors for the data obtained for samples,
as described by Sluiter et al [36].

2.2.4 Uronic acids content

The uronic acids contents of raw material and pectin extract
samples were determined by high-pressure ion exchange
chromatography (HPAEC) and electrochemical detection.
The chromatography system, flow rates, and detectors were
as described in Section 2.2.3. Separation of the uronic acids
was achieved using sodium hydroxide and a sodium acetate
elution gradient [41, 42]. An increase in sodium acetate con-
centration with respect to sodium hydroxide in the elution
gradient allows the release of uronic acids (4-O-methyl-D-
glucuronic acid, galacturonic acid, and glucuronic acid)
from the column packing and their subsequent separation.
The program was deployed after 35 min following the sugars
determination program described above [40].

2.2.5 Molecular weight determination

The pectin extract samples were subjected to size exclu-
sion chromatography (SEC) to analyse the MWs, number
average molar mass (Avg Mn), and polydispersity indexes
(PDIs) of the pectin. The samples were first diluted with DEI
water followed by filtration using 0.2-pm syringe filters into
vials for analysis on the SEC system. The SEC system was
equipped with a pump (Dionex ICS-5000 DP), an autosam-
pler (Dionex AS) and an RI detector (RI-101 series; Shodex,
Munich, Germany). The separation was carried out using
two analytical columns in sequence, Ultrahydrogel 2000 A
(12 pm, 7.8 mm X 300 mm) followed by Ultrahydrogel 250
A (6 pm, 7.8 mm X 300 mm), at a temperature of 30°C. DEI
water containing 0.5 g/L sodium azide was used as the eluent
at a flow rate of 1 mL/min. An Ultrahydrogel 125 A6 pm,
7.8 mm X 300 mm) was used as a guard column.
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2.2.6 Determination of degree of esterification

The DEs of the pectin extracts was determined by a titri-
metric method described earlier [43], but with some modi-
fications. A 0.2-g dried sample of pectin extract was dis-
solved in 100 mL of distilled water. After the sample was
completely dissolved, five drops of phenolphthalein were
added, and the solution was titrated with 0.1 N NaOH. The
volume of the 0.1 N NaOH solution used was recorded as
the initial titre (V1). Subsequently, 10 mL of 0.1 N NaOH
was added to a neutralised poly-GalA after determination
of the free carboxy groups. The solution was allowed to
stand for 30 min to ensure the saponification of the esteri-
fied carboxy groups of the polymer. A total of 10 mL of 0.1
N HCI was subsequently added to neutralise the solution
under vigorous stirring. The excess HCl was titrated with
0.1 N NaOH until a faint pink colour persisted after vigor-
ous shaking (end point). The volume of the 0.1 N NaOH
(indicative of the number of esterified carboxy groups) was
recorded as the final titre (V2). The DE was then calculated
using Eq. (1).

V2

DE(%)=mx

100 (1)

2.3 Process of pectin extraction from tobacco
residue

As shown in Fig. 1, the process of pectin extraction developed
in this work is divided into three stages: (I) pre-treatment of
tobacco samples, (II) pectin extraction from pre-treated sam-
ples, and (III) pectin separation. These processes are described
in the sections below. Each of these stages was investigated and
tailored to maximize the production of pectin from the biomass.
However, the main optimisation study was conducted on the
extraction stage as it was found to be the most crucial step to
maximize pectin yield, purity, and recovery. It should be noted
that preliminary extraction experiments and optimisation runs
were carried out on the Bakoum Miena sample, since it was the
variety that was available in a quantity sufficient to complete all
the investigative runs. The resulting preferred conditions were
then applied to the NRT63 and NRT 61 samples for comparison
with the Bakoum Miena sample.

2.3.1 Pre-treatment of tobacco samples

Two pre-treatment approaches were applied to the tobacco
samples to remove the extractives and bioactive components
prior to the extraction of the pectin. These pre-treatment
methods are described below.
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Fig. 1 Schematic diagram of pectin extraction process detailing the pre-treatment and extraction alternatives
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2.3.2 Cold ethanol pre-treatment

Ten (10) grams of powdered tobacco residues was
weighed and placed in a reaction vessel, and 100 mL of
85% (v/v) of aqueous ethanol solution were added. The
resulting mixture was incubated at 25°C for 4 h under
magnetic stirring at 200 rpm. The mixture was allowed
then to settle for approximately 1 h, after which the aque-
ous alcohol supernatant was separated from the insoluble
solids. The clear supernatant containing the extractives
was filtered, leaving the solid material. The solids were
then washed with 200 mL of water to remove any resid-
ual alcohols and released extractives. This mixture was
centrifuged (10,000 rpm for 20 min) to separate the wash
supernatant from the solids. The solids were then sub-
jected to acid or enzymatic hydrolysis in Section 2.3.3
to extract the pectin.

Ethanol pre-treatment using the ASE-200 solvent extrac-
tor ASE-solvent extraction pre-treatment was carried
out using a Dionex ASE-200 solvent extractor (Thermo
Fisher Scientific, Waltham, MA, USA). The extraction
cell was loaded with a measured quantity of tobacco
sample, closed, and fitted to the oven with the needle
mechanism placed on the collection vial. Pressure was
then applied to seal the cell. The aqueous ethanol solvent
(95% [v/v]) was pumped into the cell at 1500 psi until it
was filled with the solvent, usually with 1 mL of solvent
escaping into the collection vial (a mechanism where the
sensor ensures that the cell is filled with the solvent). At
this point, the static valve closed and the flow stopped.
The cell was then heated for about 5 min to ensure that
the sample attained thermal equilibrium at 100°C. This
was followed by the 7-min static period for the solvent
to dissolve the extractives. During the heating and static
periods, the set pressure (1500 psi) in the cell was main-
tained by means of a valve that periodically opened and
closed. After the static phase, flushing was carried out
where the static valve opened, and the extract flowed into
the collection vial. The static and flushing steps were
carried out two additional times with a fresh batch of sol-
vent per cycle. The last cycle ended with a purging step
where the remaining solvent was displaced with a purge
gas (nitrogen). The collection vial now contained all the
solvent together with the extractives extracted from the
sample. After this, the residual pressure was released
from the extraction cell, and the pressure was vented
from the system. The cell was then unloaded from the
oven and returned to the tray with the needle mechanism
removed from the vial. The solid residues obtained from
the cells were then dried overnight at 40°C and later
taken for acid or enzymatic hydrolysis (in Section 2.3.3)
to extract pectin.

@ Springer

2.3.3 Pectin extraction

The pectin extraction step involved the liberation and solubi-
lisation of the protopectin from the cell matrix for subsequent
separation. This was achieved either by acid or enzymatic treat-
ment as described below.

Pectin extraction by acid treatment A weighed amount (10 g)
of the pre-treated tobacco sample was mixed with 100 mL of
0.01 N aqueous HCI solution, and the pH was adjusted to the
desired level (pH 1.5) by the addition of 3 N HCl solution. The
resulting mixture was stirred at 100 rpm for 2 h at 90°C. After
the hydrolysis process, the samples were cooled to room tem-
perature. The mixture was then centrifuged at 10,000 rpm for
20 min. The collected supernatant was further filtered through
2-3-pum filter paper to remove any suspended solids. The col-
lected supernatant was further treated as described in Sec-
tion 2.3.4 to obtain the pectin extract. To identify an operating
regime that best achieved pectin liberation and solubilisation
from the cell walls during acid hydrolysis, a set of conditions
(incubation temperatures of 85°C, 90°C, and 95°C; pH of 2.0,
1.5, and 1.4; and incubation times of 1.5, 2, and 2.5 h) were
tested.

Pectin extraction by enzymatic treatment An amount (10 g)
of the pre-treated tobacco sample was placed in a reaction
vessel, then 100 mL of 0.01 N sodium citrate buffer pH 5.0
was added, followed by the addition of the chosen enzyme.
The resulting mixture was incubated at 50°C for 12 h at 100
rpm. After the hydrolysis process, the mixture was kept at
100°C for 5 min to stop enzyme activity. The mixture was
then cooled down to room temperature and centrifuged at
10,000 rpm for 20 min to obtain the supernatant. The col-
lected supernatant was further filtered through 2—-3-pm filter
paper to remove any suspended solids. The collected super-
natant was further treated as described in Section 2.3.4 to
obtain the pectin extract. The tested parameters included:
type of commercial enzyme (Suno™036 [Metgen, Kaarina,
Finland], Celluclast 1.5L [Sigma-Aldrich, Burlington, MA,
USA] and a Cellulase enzyme blend [Sigma-Aldrich]), pH
(4.5, 4.8, and 5.0), incubation time (12, 16, and 24 h) and
enzyme dosage (24, 50, 100, 200, and 300 mg enzyme/g
substrate).

2.3.4 Pectin separation

The pectins in the supernatants resulting from the Sec-
tion 2.3.3 were recovered from the supernatant by precipi-
tation. This was achieved by dispersion of the filtered super-
natants into ethanol, isopropanol or acetone. The amount of
precipitation solvent to be added was calculated such that
the solvent concentration of the resulting mixture would be
70% (v/v). The resulting mixture was stored at 4°C for 12 h
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to allow the pectin to precipitate. The precipitated pectin was
separated by centrifugation (10,000 rpm, 20 min), washed
twice with cold 70% (v/v) ethanol, and centrifuged again.
The obtained wet pectin was then dried at 40°C in an oven
until a constant weight was obtained. The obtained pectin
extracts were analysed for lignocellulosic sugars, lignin, and
uronic acids to determine the efficiency of the extraction
process.

2.3.5 Calculation of pectin extract yield, purity,
and recovery

The efficiency of the extraction processes was evaluated
based on three parameters: (I) pectin yield, (IT) pectin purity,
and (IIT) pectin recovery.

The yield of pectin was determined gravimetrically
according to equation (2).

(weight of dried pectin extract)

Pectin yield (%) = 100

@

Pectin purity was based on the GalA content of the extract

since it constituted the main structural unit of the pectin. The
purity was therefore determined by equation (3).

(weight of dried tobacco sample) *

(mass of GalA in pectin extract)
x 100

3

The pectin recovery determines how much of the GalA

content of the starting biomass was extracted in the pectin
extract. It was calculated using equation (4).

Pecti ity (%) =
ectin purity (%) (dry mass of pectin extract)

f GalA i tin extract
(g of GalA in pectin extract) 100

“

Pectin recovery (%) =

(g of GalA in tobacco sample) *

2.4 Statistical method of acid hydrolysis
optimisation

The temperature, time, and pH were varied in a factorial
design with 3 (60, 75, and 90°C), 2 (2 and 6 h), and 2 (pH
1.0 and 1.5) levels, respectively (total experimental runs, n
= 12) to identify the factors of significance (p-value < 0.05)

and determine the preferred set of conditions for efficient
pectin extraction from tobacco biomass. Once the experi-
ments were completed, the pectin extract samples were
subjected to compositional analysis to determine the yield,
purity, and recovery percentages. The results obtained were
analysed using Statistica software, version 13.5 (TIBCO
Software, Palo Alto, CA, USA).

3 Results and discussion
3.1 Raw material composition

The composition of tobacco residues was evaluated to better
understand the nature of the biomass and which extraction
methodology to apply. Water extraction was avoided so that
water-soluble polysaccharides remained undisturbed. Know-
ing the ethanol extractive concentrations is crucial as they
interfere with the extraction of polysaccharides and proteins
from the biomass. For this reason, the ethanol-extracted
sample was subjected to a standard two-step hydrolysis
method to determine the concentration of structural com-
ponents in the biomass.

Table 2 summarises the lignocellulosic composition of
the tobacco samples. The results show that they contained
high amounts of ethanol-soluble extractives and ash that
might interfere with the pectin extraction process. Bakoum
Miena has the highest percentage of extractives (27.78%)
and lowest percentage of ash (17.55%), while NRT61 and
NRT63 have similar extractives (20.75% and 19.81%,
respectively) and ash contents (25.78% and 28.33% respec-
tively). The high ash content of the tobacco laminae sam-
ples appears to be an intrinsic property of the biomass, as
authors have reported the tobacco leaf sample to have ash
contents of 17 to 26.2% [44, 45]. Potassium was found to
be the highest constituent of the ash due to how readily the
plant can absorb the macronutrient. Also, high potassium
content is desirable as it increases tobacco leaf sweetness
and combustibility [46].

The ethanol-soluble extractive comprises reducing sug-
ars, alkaloids, organic acids, polyphenols, lipids, waxes,
pigments, resins, and a fraction of water-soluble salts [45].
The mass balance of the samples’ components accounted for

Table 2 Summary of lignocellulosic composition (% dry mass) of the tobacco samples

Sample Name  Glucan Xylan Mannan Arabinan Galectin Rhamnan Galac- Klason Lignin ~ Acid-Solu- Extractives Ash
turonic ble Lignin
acid
Bakoum Miena 9.37 1.50 039 0.93 1.02 0.62 7.89 5.83 4.43 27.78 17.55
NRT61 8.21 079 045 1.10 1.10 0.78 7.60 5.50 4.84 20.75 25.78
NRT63 7.53 070 043 0.96 1.00 0.73 8.15 5.43 4.65 19.81 28.33
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77.31%, 76.90%, and 77.72% for Bakoum Miena, NRT63,
and NRT61, respectively, which indicates the presence of
other extractives such as proteins, pigments, starch, lipids,
and tannins that were not quantified.

Sample contents of GalA (the main structural unit of pec-
tin) ranged from 7 to 8% of dry matter (DM), with Bakoum
Miena being the highest at 8.15% DM. Pectin is quite heterog-
enous in nature and is considered a polydisperse polymer with
the structure differing at various regions along the polymer
chain [47]. Consequently, the pectin structure could consist of
homogalacturonan (HG), thamnogalacturonan I (RG-I), and
rhamnogalacturonan II (RG-II). This implies that a fraction of
the neutral sugars (glucan, arabinan, galactan, and rhamnan)
detected in the biomass samples (Table 2) may be representa-
tive of the residues linked to the main GalA backbone [48].
As a result, the true pectin content of the tobacco biomasses
could be higher than just the GalA content. Nevertheless,
GalA content has been widely adopted as a conservative
measure of pectin content [16, 49, 50]. The pectin contents
obtained here are within the ranges of values for a variety of
tobacco samples reported in literature [4, 25, 51]. Further-
more, the pectin contents of the tobacco samples are close
to that of apple pomaces (3.5 to 14.32% DM), making them
attractive candidates for sustainable pectin extraction [52].

3.2 Effect of pre-treatment type on pectin
extraction

The pre-treatment step to remove the extractives was car-
ried out using aqueous ethanol to obtain alcohol-insoluble
residue for pectin extraction (acid extraction method, Sec-
tion 2.3.3). Samples of the Bakoum Miena tobacco residues
were tested for two ethanol pre-treatment methods: (a) cold
ethanol pre-treatment and (b) ASE extraction pre-treatment.

The ASE pre-treatment process rendered a pectin extract
yield of 11.0% DM that was higher than the 8.5% DM
obtained from the cold ethanol pre-treatment. However, the
pectin extracts obtained after cold ethanol pre-treatment
had a low ash content of 6% DM compared to the 19% DM
obtained with the ASE pre-treatment process. A low ash
content (<10%) is highly desirable in a commercial grade
pectin as it is necessary for good gel formation [24, 53]. Cor-
respondingly, the purity (GalA content) of the pectin from
the cold ethanol pre-treatment (44.0%) was higher than the
ASE pre-treatment (38.2%) counterpart.

Pectin recovery can be considered the most important
measure of extraction efficiency since it is a collective meas-
ure of the effectiveness of the pre-treatment and hydrolysis
processes. The ASE pre-treatment yielded a higher pectin
recovery (45.7%) compared to cold ethanol pre-treatment
(40.4%). However, the application of pressurised liquid
extraction on a large scale may be technically challeng-
ing and expensive due to the severity of the pre-treatment

@ Springer

conditions. In addition, further purification processes may be
required to reduce the ash content of the extract and increase
its purity, which will lead to additional downstream process-
ing costs.

The mass balance across the main stages of pectin extrac-
tion, from pre-treatment down to the pectin extraction and
purification stages (Fig. 2), suggests that the ASE pre-treat-
ment process removed about 28.2% of the total solids of
the biomass, whereas the cold ethanol wash removed only
13.2%, indicating that ASE pre-treatment removes more
extractives from the biomass. The ethanol supernatant recov-
ered from the pre-treatment process was tested for sugars
and uronic acids, and these were only present in negligible
amounts or not detected at all. Washing the biomass with
water after the cold ethanol pre-treatment process is an
essential step responsible for removal of about 58% of the
ash content of the biomass (Fig. 2). As a result, the pec-
tin extract had a lower ash content, similar to commercial
grade pectin. Therefore, cold ethanol wash pre-treatment
followed by a water wash appears to be the more desirable
pre-treatment method as it might be relatively easier to scale
up. Therefore, the rest of the investigative experimental runs
were carried out using the cold ethanol pre-treatment and
water wash process prior to pectin extraction.

3.3 Isolation of pectin from acid hydrolysate

To improve pectin recovery and purity from the obtained
supernatant (by acid extraction method, Section 2.3.3),
investigations were also carried out to identify an ideal sol-
vent for the precipitation (isolation) of the pectin from the
acid hydrolysate. Acetone and isopropanol were tested as
alternatives to ethanol as these are reported as the most suit-
able solvents for pectin precipitation [54]. Pectin recovery
from precipitation with acetone was only slightly higher
than with ethanol, while isopropanol yielded the lowest pec-
tin recovery (Fig. 3). It was concluded that ethanol would
be the preferred precipitating agent, as the recovery yield
improvement with the other tested solvents was not signifi-
cant and because ethanol is typically favoured by industries
when scale-up is considered [55]. A report by Garna et al
[50] stated that ethanol precipitation guarantees up to 98%
recovery of the pectin content of the hydrolysate solution
after acid hydrolysis. Therefore, further pectin precipitations
in the subsequent experimental runs were performed with
ethanol.

3.4 Pectin extraction by acid extraction

The pre-treated samples were subjected to acid extraction
using different set of conditions previously reported in lit-
erature as suitable for pectin extraction [48, 56, 57]. This
was done to determine the range of conditions that would
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achieve sufficient pectin liberation from the cell walls to the
extracting acid solution to provide a suitable departing point
for the subsequent optimisation. The Fig. 4 shows that as the
severity of the extraction condition increased in the tested
range, so did the amount of pectin extracted. The pH and
temperature appear to be crucial parameters influencing the
outcome.

Within the tested pH range, pectin recovery increased
with decreasing pH, with the highest value of 49.3% at pH
1.4. This indicates that increasing the acid strength may
result in greater recovery of pectin from the biomass, as
reported elsewhere [17]. Essentially, high concentrations
of hydrogen ions in the solvent facilitates the extraction of
the protopectin [58]. Concomitantly, high acid strength will
increase the solubilisation of non-pectic substances present
as impurities in the extract, despite the high yield of pectin
obtained [50].

With regards to the effect of temperature, the general
observation is that pectin recovery increased with higher
temperatures. The lowest pectin recovery was obtained at
85°C, whereas the highest was obtained at 95°C. Increas-
ing the temperature to more than 95°C is not advisable due
to the significant energy implications and requirement of
pressure reactors. Furthermore, an accelerated hydrolysis
of the pectin could occur at elevated temperatures, which
would lead to lower recovery of extracted pectin. A similar
observation was found regarding extraction time: extending
the reaction time improved pectin recovery. The GalA units
of the pectin are bound by a-(1, 4) glycosidic bonds, and suf-
ficient time is needed to soften this matrix to enable pectin
recovery [17]. On the other hand, a prolonged reaction time
could destroy pectin’s glycosidic and ester bonds, leading to
significant reductions in the MW and gelling properties of
the recovered pectin [57] (Fig. 4).

Fig.4 Summary of results
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3.5 Enzymatic extraction of pectin

Acid extraction is the most used method for pectin extrac-
tion because it is convenient, inexpensive, and usually allows
for high pectin yields and recoveries [32]. However, recent
trends have directed attention towards biotechnology hydroly-
sis approaches (i.e., using enzymes). Two main categories of
enzymes are used: (I) enzymes that degrade and isolate the
specific pectin fragments and (II) enzymes that deconstruct
the plant cell wall and isolate whole pectin molecules [49].
In this study, the latter approach employed cellulases, a group
of cellulose-hydrolysing enzymes. Three different commer-
cial types of these cellulase complexes (Suno'™036, Cellu-
clast 1.5L, and Cellulase) were applied to the pre-treated solids
obtained from Bakoum Miena under various processing condi-
tions. The results of these experiments are presented in Fig. 5.

Our results showed that the enzymatic approach produced
inferior outcomes compared to the acid extraction approach.
The pectin extract yields obtained with enzymes were compa-
rable to those obtained with the acid extraction process; how-
ever, the pectin purities and recoveries obtained with the enzy-
matic method were significantly lower than those obtained
with acid hydrolysis. The low pectin purities obtained with
the enzymatic approach can be partly explained by the fact
that the enzymatic method is able to solubilise undesirable
compounds, which increases the content of impurities [55].
This is particularly true for tobacco biomass as it is known to
contain about 3000 different chemical compounds [4].

Of the three enzymes tested, Celluclast 1.5L showed the
highest pectin yield, purity, and recovery (9.2%, 12.2%, and
12.7%, respectively). A trend of increased pectin yield, purity,
and recovery with increasing enzyme dosage was observed,
with the highest of these values (11.3%, 12.2%, and 17.9%,
respectively) obtained at the highest enzyme dosage of 300

Fig.5 Summary of results from
pectin extraction by enzy-
matic hydrolysis under various

M@ Pectin extract yield, %

mg enzyme/g substrate. For bioethanol production from lig-
nocellulosic biomass, the dosage of 5 to 50 units/g cellulose
is used, and this is often considered as the highest contributor
to operation costs [59]. The high enzyme dosage used in our
experiments would translate into increased operating cost, and
the extra enzyme remaining free in the solvent could degrade
the solubilised pectin, which would be counterproductive to
pectin recovery [59, 60].

Pectin yield, purity, and recovery all demonstrated a
direct relationship with the reaction time within the tested
range. This is because the enzymes required sufficient time
to penetrate the tobacco matrix and liberate the pectin com-
ponent [23, 55]. Limiting the reaction temperature to the
domain of optimal enzymatic stability and activity limits the
rate of mass transfer, thereby prolonging the reaction time.
The highest pectin recovery, which was still much lower
than the acid extraction method, was obtained only after
24 h of reaction time. These prolonged treatment times are
considered typical for effective pectin extraction from raw
materials using enzymes [61, 62]. However, the extended
periods could have implications on the capital investment,
operating costs, and productivity of a scaled-up process [14].

3.6 Cascaded approach for pectin extraction

A cascaded approach for pectin extraction was explored,
where the solid residues obtained from enzymatic hydroly-
sis of the Bakoum Miena samples were subjected to acid
hydrolysis. This was done to consider the use of enzyme in a
pre-extraction step prior to the acid hydrolysis. The intention
was to possibly reduce the use of mineral acid, which can
generate significant quantities of environmentally hazardous
waste that requires treatment before disposal. Figure 6 details
the outcomes of this approach. There was an improvement
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of hydrolysis compared with when only enzymes were used.
For example, when the enzymatic hydrolysis with Celluclast
1.5L was followed with acid hydrolysis, the pectin purity and
recovery increased from 12.2% and 12.7%, respectively, to
42.0% and 25.6%, respectively. However, these results were
still inferior compared to the acid-only process. Compar-
ing the extracts from the best-case scenarios of the vari-
ous hydrolysis methods applied (Figs. 4, 5, and 6), the acid
hydrolysis method yielded both the highest pectin purity and
recovery. This is consistent with observations in literature
that the purity of the extract from acid hydrolysis is usually
higher than that from enzymatic hydrolysis [15].

3.7 Effects of operating conditions on pectin
extract yield

After identifying acid extraction as the more suitable
approach to efficiently extract pectin from the tobacco sam-
ple, specific efforts were directed at improving the preferred
range of hydrolysis conditions to maximise the efficiency of
the pectin extraction from the Bakoum Miena sample.

As shown in Table 3, the measured pectin extract yield var-
ied between 3.8% and 8.8%. The conditions that achieved the
highest pectin yield from tobacco biomass were a temperature
of 90°C, pH 1.5, and 6 h of extraction (Run 12). As shown in

Table 3 Summary of results

from the optimisation runs on Run Temp, °C pH Time, h P.ectigl extract Pectin purity®, Pectin .
8 yield®, % % recovery®,
Bakoum Miena %
1 60.0 1.0 2.0 52 44.7 29.8
2 60.0 1.0 6.0 5.8 54.9 40.6
3 60.0 1.5 2.0 43 35.7 19.6
4 60.0 1.5 6.0 4.4 357 19.9
5 75.0 1.0 2.0 5.4 50.6 34.8
6 75.0 1.0 6.0 5.8 449 33.0
7 75.0 1.5 2.0 6.3 52.3 41.9
8 75.0 1.5 6.0 5.4 46.7 31.7
9 90.0 1.0 2.0 4.4 51.0 27.9
10 90.0 1.0 6.0 3.8 56.3 26.8
11 90.0 1.5 2.0 6.0 51.3 38.7
12 90.0 1.5 6.0 8.8 44.3 48.7

“Pectin extract yield = (wt. of pectin extract/wt. of starting biomass) X 100%

PPectin purity = (wt. of GalA/wt. of pectin extract) x 100%

“Pectin recovery = (wt. of GalA in pectin extract/wt. of GalA in starting biomass) X 100%
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Fig. 7 Response surface plots showing the effects of temperature, time, and pH on pectin extract yield from Bakoum Miena

Fig. 7, temperature and pH had a profound influence on the
yield of pectin extracted, but the influence of time was less
significant. One reason for this could be the fact that pectin
extract yield is not a true measure of extraction efficiency
since the pectin extract is only a gravimetric estimation of the
mass percentage of the extract, and as such it considers neither
its quality nor its purity. To this end, we also investigated the
relationships between the extraction conditions and the pectin
purity and recovery as discussed in the sections below.

3.8 Effects of operating conditions on pectin
extract purity

The highest pectin purity (56.3%) was obtained at 90°C,
pH 1.0, and 6 h (Run 10). Generally, consistently high
pectin purities were recorded within the 90°C tempera-
ture domain, except for Run 12 where purity was 44.3%.
These results were corroborated by the steep gradient of
the temperature against purity plots (Fig. 8). The effects
of pH and time on the purity were not very evident. It

is possible that the ranges of pH and time tested did not
allow for significant changes in pectin extract purity. This
could bode well in the context of scaled up pectin produc-
tion, where fluctuations in operating conditions are to be
expected. In this scenario, consistent product quality could
be maintained regardless of minor fluctuations in operating
conditions that may occur.

3.9 Effects of operating conditions on pectin
recovery

Table 3 shows that the highest pectin recovery (48.7%) was
obtained at 90°C, pH 1.5, and 6 h (Run 12), which cor-
responds to the conditions for the highest pectin extract
yield. Similar to the pectin purity, temperature appears to
profoundly influence pectin recovery (Fig. 9), whereas pH
and time do not appear to have significant effects within the
selected ranges.
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Fig. 8 Response surface plots showing the effects of temperature, time, and pH on pectin extract purity from Bakoum Miena

The highest pectin recovery obtained with the 90°C, pH 1.5,
and 6 h conditions (Run 12) may indicate that these are near
the optimal conditions for pectin recovery. However, the results
from Run 11 (90°C, pH 1.5, and 2 h extraction) indicate that
even as pectin yield and recovery may increase with extraction
time, the trade-off is a decrease in pectin purity. The reduction
in purity could be due to enhanced solubilisation of non-pectic
substances that may have precipitated together with the pectin
during the extraction process. Another reason could be that
the severe extraction conditions may have further degraded the
solubilised pectin into monomers, which were not precipitated
as part of the pectin extract. To improve purity, a compromise
could be limiting the reaction time to 4 h. Consequently, the
favourable conditions for optimum recovery, yield, and purity
of pectin were 90°C, pH 1.5, and 4 h of extraction time.

@ Springer

3.10 Pectin extraction efficiencies from three
tobacco varieties

Using the optimal acid hydrolysis conditions determined
above, pectin was extracted from samples of the three
tobacco varieties. Table 4 summarises the extraction condi-
tions and results, including the DEs of the obtained pectins.
Overall, pectin recovery was significantly improved com-
pared to previously obtained values (Table 3). The highest
pectin yield (10.6%), purity (48.7%), and recovery (66.2%)
were obtained in the tobacco variety NRT63. When based on
the GalA content, the purities of pectin obtained from these
tobacco samples are comparable to those obtained from the
apple pomace derived from the apple variety “Blanca de
Asturias” (38.0% to 47.1%) [63].
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Fig.9 Response surface plots showing the effects of temperature, time, and pH on pectin recovery from Bakoum Miena
Tab.lefl Applig.at.ion of Variety Temp, °C pH Time, h Pectin extract  Pectin Pectin DE, %
optimised con itions to three yield®, % purityb, %  recovery®, %
tobacco varieties
Bakoum Miena 90 1.5 4 10.6 433 57.8 32.8
NRT63 90 1.5 4 10.6 48.7 66.2 31.5
NRT61 90 1.5 4 10.0 474 56.7 27.7

*Pectin extract yield = (wt. of pectin extract/wt. of starting biomass) X 100%
PPectin purity = (wt. of GalA/wt. of pectin extract) x 100%,

“Pectin recovery = (wt. of GalA in pectin extract/wt. of GalA in starting biomass) X 100%

3.11 Degree of esterification of pectin extracts

The DE:s of the pectin extracts obtained with acid hydrolysis
were determined since they were the only ones with sufficient
product quality to warrant characterisation (Table 4). Gener-
ally, the pectin extracts had a DE less than 50%, which classi-
fies them as the low methyl ester (LM) pectin. These undergo
gelling in the presence of calcium ions and contain minimal

amounts of sugar [55]. They are used in the food industry to
make low-sugar jams, pastries, and preparations designed to
have low sweetness. LM pectin also functions as fat substitute
in baked goods and as an acid stabiliser in protein drinks like
drinking yoghurt [64]. It should be noted that the DE of the
pectin extract is heavily dependent on the nature of the bio-
mass, as well as on the extraction conditions. Harsh extrac-
tion conditions such as high temperatures, high acidic strength

@ Springer



Biomass Conversion and Biorefinery (2024) 14:29481-29501

29496

6'6C S0l L'6S VLY L'e 9t S0 €0 0 I'v 14 S1 06 I191LdN Sl
goe L8 609 L8y 9¢ e 0] €0 0 I'tv ¥ Sl 06 €OLIN 4!
I'6¢ 1’9 8YS ey 9¢ I'e €0 €0 0] 8V ¥ Sl 06 BUQIAl WNOYeg el
£ee Lol 09¢ ey (23 Le 0 70 €0 8¢ 9 S1 06 €OLIN cl
ee 66 699 £9¢ 9°¢ 9¢ 0 70 €0 4 9 I 06 €OLIN Il
S'LT L'L 819 1Y I'e (4% L0 €0 €0 6V C S1 06 €OLIN o1
6'LC €9 869 OIS Le 8V 0 0] 70 0¢ C [ 06 EOLIN 6
08¢ 98 €9 L9y 9'¢ ¥ 90 0 €0 9 9 ¢l SL EOLIN 8
¥'6C I'6 ¢'19 6'vy e 6'v (4! €0 €0 99 9 [ SL €OLIN L
6°¢C S9 9'69 149 0¢ 2 80 Y0 €0 9L C Sl SL €OLIN 9
6°6C €8 8¢9 9°0S ¥e 8¢ 61 €0 €0 9 4 I SL €9LIAN S
[4i% el L9y L'SE 81 ge I'C 0 0 e 9 S1 09 €OLIN 14
£ve I'6l L9v L'SE 61 Le ¢ €0 0 ¥ (4 S1 09 €OLIN €
L€t 6 L9 6vS 0c 6°¢ 8’1 €0 0 (% 9 [ 09 EOLIN C
['9¢ 06 0°sS Lvy 61 e I'c €0 0 ¥'C C [ 09 EOLIN [
NEliile) ysy s1eSns 210, VIeD qsouwreyy asojor[eD) Jsourqery QSOUURA] 9SO[AY asoon|H
INA % ‘uonisodwo) [ ‘owr], Hd D, ‘dwag, rensqns

SUONIPUOD SNOLIBA ISPUN PAUTEIqO S10BNX? unoad Jo suonisodwoos 1esns [e10], § 3|qeL

pringer

Qs



Biomass Conversion and Biorefinery (2024) 14:29481-29501

29497

(very low pH <1.5) and prolonged reaction times could result
in increased de-esterification of the polygalacturonic chains.

3.12 Sugar composition of pectin extracts

Table 5 provides an overview of the sugar compositions of the
samples obtained from the optimisation experimental runs.
Among the neutral sugars, glucose, galactose, and rhamnose
constituted the majority. This implies the possible presence
of the rhamnogalacturonan backbone and arabinan- and/or
arabinogalactan-rich side chains in the pectin polymer. There-
fore, the pectin extracted from these tobacco samples may
predominantly consist of rhamnogalacturonan. This is con-
sistent with observations made by other authors on the struc-
ture of the pectic polysaccharides found in tobacco [5, 65].
The particularly high glucose contents detected in the pectin
extracts (compared to the other neutral sugars), suggests that
the hydrolysed cellulose oligomers are intertwined with the
pectin in tobacco, since pectin and cellulose are chemically
and physically bound to each other in the cell wall [15].
Xylose and mannose were only present in low amounts and
were due to contamination from co-extraction of hemicellu-
loses and other carbohydrate materials. The extracts’ total sugar
contents (including GalA) were mostly within the range of 55
to 70%, which corresponded to those reported for the pectin
extracts obtained from other biomasses like cocoa pod husks
and sugar beet pulp [15, 55]. The ash contents of the extracts
ranged from 6.1 to 19.1%. The Bakoum Miena variety generally
yielded pectin extracts with low ash contents. However, the total
sugar contents were also low, indicating substantial presence of
other extractives (“Others” in Table 5) that precipitate with the
pectin gel [55]. These other extractives were within the range
of 23.2 to 40.2%. The GalA contents of the extracted pectins
ranged from 35.7 to 56.5%. The same ranges were reported by
other researchers when they used different food waste streams

Table 6 SEC analysis results of pectin extract (acid extraction) sam-
ples of three tobacco varieties

Sample Name Bakoum Miena NRT61 NRT63
Peak No 1 1 1
Avg MW, kDa 380 341 343
Avg Mn, kDa 240 132 132
PDI 1.5 2.6 2.6
Peak No 2 2 2
Avg MW, kDa 0.4 14 14
Avg Mn, kDa 0.3 14 14
PDI 1.1 1.0 1.0
Peak No 3 3
Avg MW, kDa 0.03 0.03
Avg Mn, kDa 0.04 0.04
PDI 1.1 1.1

to extract pectin [66]. They claimed that such pectin extracts can
be used for different applications based on their functionalities.

3.13 Molecular weight analysis of pectin extracts

The pectin samples produced by acid extraction were sub-
jected to SEC for MW and PDI analyses. Table 6 presents
the data obtained for the three tobacco varieties. The results
demonstrate that the extracted pectins contained a consider-
able quantity of low MW (<1 kDa) impurities. The chroma-
tograms from the SEC analysis of the NRT61 and NRT63
samples showed three peaks compared to two for the Bak-
oum Miena sample. Some authors reported the presence of
sugars, amino acids, alkaloids, pigments, and other unknown
impurities in pectin extracted from tobacco samples that
were solubilised during the extraction process and inevitably
precipitated together with the pectin [2, 25]. This is expected
due to the complex nature of the tobacco biomass.

Samples NRT61 and NRT63 yielded similar SEC results
(Table 6). Three peaks were observed in the chromatograms;
two seem to be pectin fractions (high and low MW), and the
third peak comprises the very-low MW impurity fraction.
The lower MW pectin peaks (peak #2 in both samples) were
suspected to be pectic oligosaccharides.

According to the literature, the MWs of pectins extracted
from tobacco plants range from 100 to 200 kDa [67]. The
MW >300 kDa for Peak 1 (seen in all three samples) and
high PDIs may suggest the presence of pectin-protein-poly-
phenol complexes or simply pectin-polyphenol complexes.
It is usual to detect the presence of proteins or pectin-protein
complexes in the extracted pectin as has been reported in
several works [18, 48, 50, 53, 55]. The presence of protein
in the pectin may augur well for certain applications of the
pectin since the protein and esterified carboxylic groups on
the galacturonic chains contribute significantly to the emul-
sification properties of pectin [15, 68].

Table 7 SEC analysis results of purified pectin extract samples of the
three tobacco varieties and commercial pectin

Sample Name  Bakoum Miena NRT61 NRT63  Analyti-
cal grade
pectin

Peak No 1 1 1 1

Avg MW, kDa 188 189 190 650

Avg Mn, kDa 121 102 102 356

PDI 1.56 1.86 1.86 1.8

Peak % 98.86 96.4 96.2 >99

Peak No 2 2 2

Avg MW, kDa 13 14 14

AvgMn,kDa 13 14 14

PDI 1.04 1.02 1.02

Peak % 1.14 4.0 3.8
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Considering that the SEC data of the tobacco-derived
pectins did not conclusively show the true MWs, the
samples were subjected to several washings and filtra-
tions to separate the phenolics and other low MW impu-
rities. Table 7 shows that the impurity peak (<1 kDa)
disappeared, and the MWs of the pectin peaks and PDI
decreased, providing a better presentation of the true MW
of the pectin content. The partially purified pectins are
highly water soluble due to the removal of the impurities
which hitherto prevented the proper solubilisation of the
extracted pectin.

The MW of a standard pectin sample obtained from
Sigma-Aldrich is 650 kDa (Table 7), which is higher than
pectin samples obtained from tobacco laminae (Tables 6
and 7). This standard pectin was obtained from citrus fruits
which is one of the most used feedstocks for pectin extrac-
tion. Citrus pectins can have MWs between 134 and 965 kDa
depending on the extraction conditions and the nature of the
biomass [69—71] According to a publication [72] on citrus
peel pectins, the medium MW (185 kDa) pectin fraction
obtained exhibited both low viscosity and hypocholester-
olemic activity. This suggests that the medium MW frac-
tions obtained from the tobacco samples may be suitable for
dietary fibre applications compared against higher MW (750
kDa) pectin, which exhibits high viscosity and low solubil-
ity, and low MW (66 kDa) pectin that lacks hypocholester-
olemic activity.

3.14 Biorefinery potential of pectin extraction
from tobacco biomass

The developed pectin extraction process involves the use of
ethanol to remove extractives that interfere with the pectin
extraction step, in addition to the step where ethanol is also
used to precipitate the pectin. Casas-Orozco et al [73] stated
that the highest energy consumption processes in the com-
mercial production of pectin from orange peels are those
related to the use of ethanol. While ethanol pre-treatment
makes the process potentially expensive, the economics of
the process can be improved if there is revenue associated
with these fractionated extractives. The polyphenols hold a
significant economic value if they can be extracted as a co-
product of the pectin extraction process.

Depending on the nature of the residue, the yields of pectin
alone may be low and influence the cost of the process, but
sequential extraction of high-value polysaccharides together
with other bioactive fractions (e.g., ethanol extractives) has
the potential to make the process economically feasible and
more environmentally sustainable. Recent works have high-
lighted the immense economic potential for the coextraction
of pectin and other high-value products and biofuels such as
polyphenols, bioethanol, biogas, and anthocyanins from agri-
cultural wastes in a biorefinery concept [74-77].

@ Springer

Polysaccharides extracted from tobacco may have unique
properties that will allow the recovered products to be used in
nutraceutical applications and as functional medicines. A recent
review highlighted that some pectin complexes have hypocho-
lesterolemic, antitussive, immunoregulatory, anti-inflammatory,
wound healing, anticoagulant, anticancer, gastroprotective, anti-
diabetic, antioxidant, and haemostatic activities [78].

4 Conclusions

A multi-stage pretreatment-hydrolysis extraction process
was optimized for efficient pectin extraction from the lami-
nae of three tobacco varieties The cold ethanol pre-treatment
was found to be more appropriate for tobacco biomass since
it helped remove certain extractives as well as ash, thus
producing a pectin extract of relatively higher purity. The
results from a series of experiments and analyses comparing
acid and enzyme extraction of pectin from tobacco residue
samples demonstrated that acid hydrolysis was the superior
method for solubilising the protopectin for extraction as pec-
tin. Temperature, pH, and reaction times were found to play
important roles in the yield and quality of pectin extracted.
Optimisation of the acid hydrolysis conditions produced pec-
tin recoveries of 66.2%, 57.8%, and 56.7% from the NRT63,
Bakoum Miena, and NRT61 samples, respectively.

The pectins from these samples can be classified as
LM pectins based on their DEs. Such pectins have numer-
ous applications in the food and pharmaceutical industries,
depending on their physicochemical properties. The SEC
analysis of the obtained pectins indicated that they were of
the medium MW range. Ultimately, the results demonstrate
that tobacco residues can be considered as a suitable alterna-
tive feedstock for commercial pectin production. However,
the substantial presence of extractives suggests that a biore-
finery approach, in which other high-value commodities are
also produced alongside pectin, would be economically more
advantageous. In conclusion, this work provides a useful
starting point for more comprehensive studies on the biore-
finery potential of tobacco waste that may facilitate more
effective valorisation of this abundant biomass resource.
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